Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=11 ab=10
Hei whakaoti i te whārite, whakatauwehea te x^{2}+11x+10 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,10 2,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 10.
1+10=11 2+5=7
Tātaihia te tapeke mō ia takirua.
a=1 b=10
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(x+1\right)\left(x+10\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-1 x=-10
Hei kimi otinga whārite, me whakaoti te x+1=0 me te x+10=0.
a+b=11 ab=1\times 10=10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,10 2,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 10.
1+10=11 2+5=7
Tātaihia te tapeke mō ia takirua.
a=1 b=10
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(x^{2}+x\right)+\left(10x+10\right)
Tuhia anō te x^{2}+11x+10 hei \left(x^{2}+x\right)+\left(10x+10\right).
x\left(x+1\right)+10\left(x+1\right)
Tauwehea te x i te tuatahi me te 10 i te rōpū tuarua.
\left(x+1\right)\left(x+10\right)
Whakatauwehea atu te kīanga pātahi x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-1 x=-10
Hei kimi otinga whārite, me whakaoti te x+1=0 me te x+10=0.
x^{2}+11x+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-11±\sqrt{11^{2}-4\times 10}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 11 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 10}}{2}
Pūrua 11.
x=\frac{-11±\sqrt{121-40}}{2}
Whakareatia -4 ki te 10.
x=\frac{-11±\sqrt{81}}{2}
Tāpiri 121 ki te -40.
x=\frac{-11±9}{2}
Tuhia te pūtakerua o te 81.
x=-\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{-11±9}{2} ina he tāpiri te ±. Tāpiri -11 ki te 9.
x=-1
Whakawehe -2 ki te 2.
x=-\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{-11±9}{2} ina he tango te ±. Tango 9 mai i -11.
x=-10
Whakawehe -20 ki te 2.
x=-1 x=-10
Kua oti te whārite te whakatau.
x^{2}+11x+10=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+11x+10-10=-10
Me tango 10 mai i ngā taha e rua o te whārite.
x^{2}+11x=-10
Mā te tango i te 10 i a ia ake anō ka toe ko te 0.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-10+\left(\frac{11}{2}\right)^{2}
Whakawehea te 11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{2}. Nā, tāpiria te pūrua o te \frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+11x+\frac{121}{4}=-10+\frac{121}{4}
Pūruatia \frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+11x+\frac{121}{4}=\frac{81}{4}
Tāpiri -10 ki te \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{81}{4}
Tauwehea x^{2}+11x+\frac{121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{11}{2}=\frac{9}{2} x+\frac{11}{2}=-\frac{9}{2}
Whakarūnātia.
x=-1 x=-10
Me tango \frac{11}{2} mai i ngā taha e rua o te whārite.