Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{2}}{\sqrt{5}}+3\sqrt{5}-4\sqrt{5}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2}}{\sqrt{5}}.
\frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}+3\sqrt{5}-4\sqrt{5}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{2}\sqrt{5}}{5}+3\sqrt{5}-4\sqrt{5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\sqrt{10}}{5}+3\sqrt{5}-4\sqrt{5}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{10}}{5}-\sqrt{5}
Pahekotia te 3\sqrt{5} me -4\sqrt{5}, ka -\sqrt{5}.
\frac{\sqrt{10}}{5}-\frac{5\sqrt{5}}{5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia \sqrt{5} ki te \frac{5}{5}.
\frac{\sqrt{10}-5\sqrt{5}}{5}
Tā te mea he rite te tauraro o \frac{\sqrt{10}}{5} me \frac{5\sqrt{5}}{5}, me tango rāua mā te tango i ō raua taurunga.