Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int t^{2}\mathrm{d}t
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\frac{t^{3}}{3}
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{2}\mathrm{d}t ki te \frac{t^{3}}{3}.
\frac{1^{3}}{3}-\frac{0^{3}}{3}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{1}{3}
Whakarūnātia.