Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{7\sqrt{3}-5\sqrt{2}}{4\sqrt{3}+\sqrt{18}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{7\sqrt{3}-5\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{\left(4\sqrt{3}+3\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{7\sqrt{3}-5\sqrt{2}}{4\sqrt{3}+3\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 4\sqrt{3}-3\sqrt{2}.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{\left(4\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
Whakaarohia te \left(4\sqrt{3}+3\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{4^{2}\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
Whakarohaina te \left(4\sqrt{3}\right)^{2}.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{16\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{16\times 3-\left(3\sqrt{2}\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-\left(3\sqrt{2}\right)^{2}}
Whakareatia te 16 ki te 3, ka 48.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-3^{2}\left(\sqrt{2}\right)^{2}}
Whakarohaina te \left(3\sqrt{2}\right)^{2}.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-9\left(\sqrt{2}\right)^{2}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-9\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-18}
Whakareatia te 9 ki te 2, ka 18.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{30}
Tangohia te 18 i te 48, ka 30.
\frac{28\left(\sqrt{3}\right)^{2}-21\sqrt{3}\sqrt{2}-20\sqrt{3}\sqrt{2}+15\left(\sqrt{2}\right)^{2}}{30}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 7\sqrt{3}-5\sqrt{2} ki ia tau o 4\sqrt{3}-3\sqrt{2}.
\frac{28\times 3-21\sqrt{3}\sqrt{2}-20\sqrt{3}\sqrt{2}+15\left(\sqrt{2}\right)^{2}}{30}
Ko te pūrua o \sqrt{3} ko 3.
\frac{84-21\sqrt{3}\sqrt{2}-20\sqrt{3}\sqrt{2}+15\left(\sqrt{2}\right)^{2}}{30}
Whakareatia te 28 ki te 3, ka 84.
\frac{84-21\sqrt{6}-20\sqrt{3}\sqrt{2}+15\left(\sqrt{2}\right)^{2}}{30}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{84-21\sqrt{6}-20\sqrt{6}+15\left(\sqrt{2}\right)^{2}}{30}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{84-41\sqrt{6}+15\left(\sqrt{2}\right)^{2}}{30}
Pahekotia te -21\sqrt{6} me -20\sqrt{6}, ka -41\sqrt{6}.
\frac{84-41\sqrt{6}+15\times 2}{30}
Ko te pūrua o \sqrt{2} ko 2.
\frac{84-41\sqrt{6}+30}{30}
Whakareatia te 15 ki te 2, ka 30.
\frac{114-41\sqrt{6}}{30}
Tāpirihia te 84 ki te 30, ka 114.