Aromātai
211.5
Tauwehe
\frac{47 \cdot 3 ^ {2}}{2} = 211\frac{1}{2} = 211.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{900}{6}\left(2\times 0.08+0.52+2\times 0.39-0.05\right)
Tātaihia te 30 mā te pū o 2, kia riro ko 900.
150\left(2\times 0.08+0.52+2\times 0.39-0.05\right)
Whakawehea te 900 ki te 6, kia riro ko 150.
150\left(0.16+0.52+2\times 0.39-0.05\right)
Whakareatia te 2 ki te 0.08, ka 0.16.
150\left(0.68+2\times 0.39-0.05\right)
Tāpirihia te 0.16 ki te 0.52, ka 0.68.
150\left(0.68+0.78-0.05\right)
Whakareatia te 2 ki te 0.39, ka 0.78.
150\left(1.46-0.05\right)
Tāpirihia te 0.68 ki te 0.78, ka 1.46.
150\times 1.41
Tangohia te 0.05 i te 1.46, ka 1.41.
211.5
Whakareatia te 150 ki te 1.41, ka 211.5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}