Aromātai
\frac{2000\left(2-18r-9r^{2}\right)}{\left(r+1\right)^{2}}
Whakaroha
-\frac{2000\left(9r^{2}+18r-2\right)}{\left(r+1\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{22000}{\left(1+r\right)^{2}}-\frac{18000\left(1+r\right)^{2}}{\left(1+r\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 18000 ki te \frac{\left(1+r\right)^{2}}{\left(1+r\right)^{2}}.
\frac{22000-18000\left(1+r\right)^{2}}{\left(1+r\right)^{2}}
Tā te mea he rite te tauraro o \frac{22000}{\left(1+r\right)^{2}} me \frac{18000\left(1+r\right)^{2}}{\left(1+r\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{22000-18000-36000r-18000r^{2}}{\left(1+r\right)^{2}}
Mahia ngā whakarea i roto o 22000-18000\left(1+r\right)^{2}.
\frac{4000-36000r-18000r^{2}}{\left(1+r\right)^{2}}
Whakakotahitia ngā kupu rite i 22000-18000-36000r-18000r^{2}.
\frac{4000-36000r-18000r^{2}}{r^{2}+2r+1}
Whakarohaina te \left(1+r\right)^{2}.
\frac{22000}{\left(1+r\right)^{2}}-\frac{18000\left(1+r\right)^{2}}{\left(1+r\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 18000 ki te \frac{\left(1+r\right)^{2}}{\left(1+r\right)^{2}}.
\frac{22000-18000\left(1+r\right)^{2}}{\left(1+r\right)^{2}}
Tā te mea he rite te tauraro o \frac{22000}{\left(1+r\right)^{2}} me \frac{18000\left(1+r\right)^{2}}{\left(1+r\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{22000-18000-36000r-18000r^{2}}{\left(1+r\right)^{2}}
Mahia ngā whakarea i roto o 22000-18000\left(1+r\right)^{2}.
\frac{4000-36000r-18000r^{2}}{\left(1+r\right)^{2}}
Whakakotahitia ngā kupu rite i 22000-18000-36000r-18000r^{2}.
\frac{4000-36000r-18000r^{2}}{r^{2}+2r+1}
Whakarohaina te \left(1+r\right)^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}