Aromātai
\frac{19\sqrt{5}}{10}\approx 4.248529157
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\times \frac{10}{2}-\frac{1}{\sqrt{5}}\times \frac{1}{2}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{2\sqrt{5}}{5}\times \frac{10}{2}-\frac{1}{\sqrt{5}}\times \frac{1}{2}
Ko te pūrua o \sqrt{5} ko 5.
\frac{2\sqrt{5}}{5}\times 5-\frac{1}{\sqrt{5}}\times \frac{1}{2}
Whakawehea te 10 ki te 2, kia riro ko 5.
2\sqrt{5}-\frac{1}{\sqrt{5}}\times \frac{1}{2}
Me whakakore te 5 me te 5.
2\sqrt{5}-\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\times \frac{1}{2}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
2\sqrt{5}-\frac{\sqrt{5}}{5}\times \frac{1}{2}
Ko te pūrua o \sqrt{5} ko 5.
2\sqrt{5}-\frac{\sqrt{5}}{5\times 2}
Me whakarea te \frac{\sqrt{5}}{5} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
2\sqrt{5}-\frac{\sqrt{5}}{10}
Whakareatia te 5 ki te 2, ka 10.
\frac{19}{10}\sqrt{5}
Pahekotia te 2\sqrt{5} me -\frac{\sqrt{5}}{10}, ka \frac{19}{10}\sqrt{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}