Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\times \frac{1}{\sqrt{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{3}}{3}\times \frac{1}{\sqrt{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{3}}{3}\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{3}}{3}\times \frac{\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{3}\sqrt{2}}{3\times 2}
Me whakarea te \frac{\sqrt{3}}{3} ki te \frac{\sqrt{2}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{6}}{3\times 2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{6}}{6}
Whakareatia te 3 ki te 2, ka 6.