Aromātai
3\sqrt{5}+5\approx 11.708203932
Tauwehe
\sqrt{5} {(\sqrt{5} + 3)} = 11.708203932
Tohaina
Kua tāruatia ki te papatopenga
\frac{-\frac{2\times 5}{5}-\frac{6\sqrt{5}}{5}}{2\left(-\frac{1}{5}\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -2 ki te \frac{5}{5}.
\frac{\frac{-2\times 5-6\sqrt{5}}{5}}{2\left(-\frac{1}{5}\right)}
Tā te mea he rite te tauraro o -\frac{2\times 5}{5} me \frac{6\sqrt{5}}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{-10-6\sqrt{5}}{5}}{2\left(-\frac{1}{5}\right)}
Mahia ngā whakarea i roto o -2\times 5-6\sqrt{5}.
\frac{\frac{-10-6\sqrt{5}}{5}}{\frac{2\left(-1\right)}{5}}
Tuhia te 2\left(-\frac{1}{5}\right) hei hautanga kotahi.
\frac{\frac{-10-6\sqrt{5}}{5}}{\frac{-2}{5}}
Whakareatia te 2 ki te -1, ka -2.
\frac{\frac{-10-6\sqrt{5}}{5}}{-\frac{2}{5}}
Ka taea te hautanga \frac{-2}{5} te tuhi anō ko -\frac{2}{5} mā te tango i te tohu tōraro.
\frac{\left(-10-6\sqrt{5}\right)\times 5}{5\left(-2\right)}
Whakawehe \frac{-10-6\sqrt{5}}{5} ki te -\frac{2}{5} mā te whakarea \frac{-10-6\sqrt{5}}{5} ki te tau huripoki o -\frac{2}{5}.
\frac{-6\sqrt{5}-10}{-2}
Me whakakore tahi te 5 i te taurunga me te tauraro.
5+3\sqrt{5}
Whakawehea ia wā o -6\sqrt{5}-10 ki te -2, kia riro ko 5+3\sqrt{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}