Aromātai
2062500x
Kimi Pārōnaki e ai ki x
2062500
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{330ton\times \frac{1000kg}{ton}}{160g\times \frac{1kg}{1000g}}x
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{\frac{330\times 1000kg}{ton}ton}{160g\times \frac{1kg}{1000g}}x
Tuhia te 330\times \frac{1000kg}{ton} hei hautanga kotahi.
\frac{\frac{330\times 1000kg}{ton}ton}{160g\times \frac{k}{1000}}x
Me whakakore tahi te g i te taurunga me te tauraro.
\frac{\frac{330\times 1000kg}{ton}ton}{\frac{160k}{1000}g}x
Tuhia te 160\times \frac{k}{1000} hei hautanga kotahi.
\frac{\frac{330000kg}{ton}ton}{\frac{160k}{1000}g}x
Whakareatia te 330 ki te 1000, ka 330000.
\frac{\frac{330000kgt}{ton}on}{\frac{160k}{1000}g}x
Tuhia te \frac{330000kg}{ton}t hei hautanga kotahi.
\frac{\frac{330000gk}{no}on}{\frac{160k}{1000}g}x
Me whakakore tahi te t i te taurunga me te tauraro.
\frac{\frac{330000gko}{no}n}{\frac{160k}{1000}g}x
Tuhia te \frac{330000gk}{no}o hei hautanga kotahi.
\frac{\frac{330000gk}{n}n}{\frac{160k}{1000}g}x
Me whakakore tahi te o i te taurunga me te tauraro.
\frac{330000gk}{\frac{160k}{1000}g}x
Me whakakore te n me te n.
\frac{330000gk}{\frac{4}{25}kg}x
Whakawehea te 160k ki te 1000, kia riro ko \frac{4}{25}k.
\frac{330000}{\frac{4}{25}}x
Me whakakore tahi te gk i te taurunga me te tauraro.
330000\times \frac{25}{4}x
Whakawehe 330000 ki te \frac{4}{25} mā te whakarea 330000 ki te tau huripoki o \frac{4}{25}.
\frac{330000\times 25}{4}x
Tuhia te 330000\times \frac{25}{4} hei hautanga kotahi.
\frac{8250000}{4}x
Whakareatia te 330000 ki te 25, ka 8250000.
2062500x
Whakawehea te 8250000 ki te 4, kia riro ko 2062500.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330ton\times \frac{1000kg}{ton}}{160g\times \frac{1kg}{1000g}}x)
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330\times 1000kg}{ton}ton}{160g\times \frac{1kg}{1000g}}x)
Tuhia te 330\times \frac{1000kg}{ton} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330\times 1000kg}{ton}ton}{160g\times \frac{k}{1000}}x)
Me whakakore tahi te g i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330\times 1000kg}{ton}ton}{\frac{160k}{1000}g}x)
Tuhia te 160\times \frac{k}{1000} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330000kg}{ton}ton}{\frac{160k}{1000}g}x)
Whakareatia te 330 ki te 1000, ka 330000.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330000kgt}{ton}on}{\frac{160k}{1000}g}x)
Tuhia te \frac{330000kg}{ton}t hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330000gk}{no}on}{\frac{160k}{1000}g}x)
Me whakakore tahi te t i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330000gko}{no}n}{\frac{160k}{1000}g}x)
Tuhia te \frac{330000gk}{no}o hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330000gk}{n}n}{\frac{160k}{1000}g}x)
Me whakakore tahi te o i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330000gk}{\frac{160k}{1000}g}x)
Me whakakore te n me te n.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330000gk}{\frac{4}{25}kg}x)
Whakawehea te 160k ki te 1000, kia riro ko \frac{4}{25}k.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330000}{\frac{4}{25}}x)
Me whakakore tahi te gk i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(330000\times \frac{25}{4}x)
Whakawehe 330000 ki te \frac{4}{25} mā te whakarea 330000 ki te tau huripoki o \frac{4}{25}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330000\times 25}{4}x)
Tuhia te 330000\times \frac{25}{4} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8250000}{4}x)
Whakareatia te 330000 ki te 25, ka 8250000.
\frac{\mathrm{d}}{\mathrm{d}x}(2062500x)
Whakawehea te 8250000 ki te 4, kia riro ko 2062500.
2062500x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
2062500x^{0}
Tango 1 mai i 1.
2062500\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
2062500
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}