Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{330ton\times \frac{gk}{not}}{160g\times \frac{1kg}{1g}}x
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{\frac{330gk}{not}ton}{160g\times \frac{1kg}{1g}}x
Tuhia te 330\times \frac{gk}{not} hei hautanga kotahi.
\frac{\frac{330gk}{not}ton}{160gk}x
Me whakakore tahi te g i te taurunga me te tauraro.
\frac{\frac{330gkt}{not}on}{160gk}x
Tuhia te \frac{330gk}{not}t hei hautanga kotahi.
\frac{\frac{330gk}{no}on}{160gk}x
Me whakakore tahi te t i te taurunga me te tauraro.
\frac{\frac{330gko}{no}n}{160gk}x
Tuhia te \frac{330gk}{no}o hei hautanga kotahi.
\frac{\frac{330gk}{n}n}{160gk}x
Me whakakore tahi te o i te taurunga me te tauraro.
\frac{330gk}{160gk}x
Me whakakore te n me te n.
\frac{33}{16}x
Me whakakore tahi te 10gk i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330ton\times \frac{gk}{not}}{160g\times \frac{1kg}{1g}}x)
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gk}{not}ton}{160g\times \frac{1kg}{1g}}x)
Tuhia te 330\times \frac{gk}{not} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gk}{not}ton}{160gk}x)
Me whakakore tahi te g i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gkt}{not}on}{160gk}x)
Tuhia te \frac{330gk}{not}t hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gk}{no}on}{160gk}x)
Me whakakore tahi te t i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gko}{no}n}{160gk}x)
Tuhia te \frac{330gk}{no}o hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gk}{n}n}{160gk}x)
Me whakakore tahi te o i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330gk}{160gk}x)
Me whakakore te n me te n.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33}{16}x)
Me whakakore tahi te 10gk i te taurunga me te tauraro.
\frac{33}{16}x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{33}{16}x^{0}
Tango 1 mai i 1.
\frac{33}{16}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{33}{16}
Mō tētahi kupu t, t\times 1=t me 1t=t.