Aromātai
\frac{33x}{16}
Kimi Pārōnaki e ai ki x
\frac{33}{16} = 2\frac{1}{16} = 2.0625
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{330ton\times \frac{gk}{not}}{160g\times \frac{1kg}{1g}}x
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{\frac{330gk}{not}ton}{160g\times \frac{1kg}{1g}}x
Tuhia te 330\times \frac{gk}{not} hei hautanga kotahi.
\frac{\frac{330gk}{not}ton}{160gk}x
Me whakakore tahi te g i te taurunga me te tauraro.
\frac{\frac{330gkt}{not}on}{160gk}x
Tuhia te \frac{330gk}{not}t hei hautanga kotahi.
\frac{\frac{330gk}{no}on}{160gk}x
Me whakakore tahi te t i te taurunga me te tauraro.
\frac{\frac{330gko}{no}n}{160gk}x
Tuhia te \frac{330gk}{no}o hei hautanga kotahi.
\frac{\frac{330gk}{n}n}{160gk}x
Me whakakore tahi te o i te taurunga me te tauraro.
\frac{330gk}{160gk}x
Me whakakore te n me te n.
\frac{33}{16}x
Me whakakore tahi te 10gk i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330ton\times \frac{gk}{not}}{160g\times \frac{1kg}{1g}}x)
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gk}{not}ton}{160g\times \frac{1kg}{1g}}x)
Tuhia te 330\times \frac{gk}{not} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gk}{not}ton}{160gk}x)
Me whakakore tahi te g i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gkt}{not}on}{160gk}x)
Tuhia te \frac{330gk}{not}t hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gk}{no}on}{160gk}x)
Me whakakore tahi te t i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gko}{no}n}{160gk}x)
Tuhia te \frac{330gk}{no}o hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{330gk}{n}n}{160gk}x)
Me whakakore tahi te o i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{330gk}{160gk}x)
Me whakakore te n me te n.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33}{16}x)
Me whakakore tahi te 10gk i te taurunga me te tauraro.
\frac{33}{16}x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{33}{16}x^{0}
Tango 1 mai i 1.
\frac{33}{16}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{33}{16}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}