Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Tohaina

\frac{\left(\sqrt{x^{2}+y^{2}}-y\right)\left(\sqrt{x^{2}+y^{2}}+y\right)}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
Whakawehe \frac{\sqrt{x^{2}+y^{2}}-y}{x-\sqrt{x^{2}-y^{2}}} ki te \frac{\sqrt{x^{2}-y^{2}}+x}{\sqrt{x^{2}+y^{2}}+y} mā te whakarea \frac{\sqrt{x^{2}+y^{2}}-y}{x-\sqrt{x^{2}-y^{2}}} ki te tau huripoki o \frac{\sqrt{x^{2}-y^{2}}+x}{\sqrt{x^{2}+y^{2}}+y}.
\frac{\left(\sqrt{x^{2}+y^{2}}\right)^{2}-y^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
Whakaarohia te \left(\sqrt{x^{2}+y^{2}}-y\right)\left(\sqrt{x^{2}+y^{2}}+y\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}+y^{2}-y^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
Tātaihia te \sqrt{x^{2}+y^{2}} mā te pū o 2, kia riro ko x^{2}+y^{2}.
\frac{x^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
Pahekotia te y^{2} me -y^{2}, ka 0.
\frac{x^{2}}{x^{2}-\left(\sqrt{x^{2}-y^{2}}\right)^{2}}
Whakaarohia te \left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}}{x^{2}-\left(x^{2}-y^{2}\right)}
Tātaihia te \sqrt{x^{2}-y^{2}} mā te pū o 2, kia riro ko x^{2}-y^{2}.
\frac{x^{2}}{x^{2}-x^{2}+y^{2}}
Hei kimi i te tauaro o x^{2}-y^{2}, kimihia te tauaro o ia taurangi.
\frac{x^{2}}{y^{2}}
Pahekotia te x^{2} me -x^{2}, ka 0.