Aromātai
8
Tauwehe
2^{3}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}+\sqrt{3}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
Whakaarohia te \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
Pūrua \sqrt{5}. Pūrua \sqrt{3}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
Tangohia te 3 i te 5, ka 2.
\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
Whakareatia te \sqrt{5}+\sqrt{3} ki te \sqrt{5}+\sqrt{3}, ka \left(\sqrt{5}+\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{5}+\sqrt{3}\right)^{2}.
\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{5+2\sqrt{15}+3}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{8+2\sqrt{15}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
Tāpirihia te 5 ki te 3, ka 8.
4+\sqrt{15}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
Whakawehea ia wā o 8+2\sqrt{15} ki te 2, kia riro ko 4+\sqrt{15}.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}-\sqrt{3}.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Pūrua \sqrt{5}. Pūrua \sqrt{3}.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}
Tangohia te 3 i te 5, ka 2.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{2}
Whakareatia te \sqrt{5}-\sqrt{3} ki te \sqrt{5}-\sqrt{3}, ka \left(\sqrt{5}-\sqrt{3}\right)^{2}.
4+\sqrt{15}+\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{5}-\sqrt{3}\right)^{2}.
4+\sqrt{15}+\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}
Ko te pūrua o \sqrt{5} ko 5.
4+\sqrt{15}+\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
4+\sqrt{15}+\frac{5-2\sqrt{15}+3}{2}
Ko te pūrua o \sqrt{3} ko 3.
4+\sqrt{15}+\frac{8-2\sqrt{15}}{2}
Tāpirihia te 5 ki te 3, ka 8.
4+\sqrt{15}+4-\sqrt{15}
Whakawehea ia wā o 8-2\sqrt{15} ki te 2, kia riro ko 4-\sqrt{15}.
8+\sqrt{15}-\sqrt{15}
Tāpirihia te 4 ki te 4, ka 8.
8
Pahekotia te \sqrt{15} me -\sqrt{15}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}