Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\sqrt{5}\sqrt{32}}{\sqrt{360}}
Tauwehea te 45=3^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 5} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{5}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{5}\times 4\sqrt{2}}{\sqrt{360}}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
\frac{12\sqrt{5}\sqrt{2}}{\sqrt{360}}
Whakareatia te 3 ki te 4, ka 12.
\frac{12\sqrt{10}}{\sqrt{360}}
Hei whakarea \sqrt{5} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{12\sqrt{10}}{6\sqrt{10}}
Tauwehea te 360=6^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 10} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{10}. Tuhia te pūtakerua o te 6^{2}.
2
Me whakakore tahi te 6\sqrt{10} i te taurunga me te tauraro.