Whakaoti mō x
x = \frac{8101 - \sqrt{16201}}{5832} \approx 1.3672354
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x}=75-54x
Me tango 54x mai i ngā taha e rua o te whārite.
\left(\sqrt{x}\right)^{2}=\left(75-54x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x=\left(75-54x\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x=5625-8100x+2916x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(75-54x\right)^{2}.
x-5625=-8100x+2916x^{2}
Tangohia te 5625 mai i ngā taha e rua.
x-5625+8100x=2916x^{2}
Me tāpiri te 8100x ki ngā taha e rua.
8101x-5625=2916x^{2}
Pahekotia te x me 8100x, ka 8101x.
8101x-5625-2916x^{2}=0
Tangohia te 2916x^{2} mai i ngā taha e rua.
-2916x^{2}+8101x-5625=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8101±\sqrt{8101^{2}-4\left(-2916\right)\left(-5625\right)}}{2\left(-2916\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2916 mō a, 8101 mō b, me -5625 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8101±\sqrt{65626201-4\left(-2916\right)\left(-5625\right)}}{2\left(-2916\right)}
Pūrua 8101.
x=\frac{-8101±\sqrt{65626201+11664\left(-5625\right)}}{2\left(-2916\right)}
Whakareatia -4 ki te -2916.
x=\frac{-8101±\sqrt{65626201-65610000}}{2\left(-2916\right)}
Whakareatia 11664 ki te -5625.
x=\frac{-8101±\sqrt{16201}}{2\left(-2916\right)}
Tāpiri 65626201 ki te -65610000.
x=\frac{-8101±\sqrt{16201}}{-5832}
Whakareatia 2 ki te -2916.
x=\frac{\sqrt{16201}-8101}{-5832}
Nā, me whakaoti te whārite x=\frac{-8101±\sqrt{16201}}{-5832} ina he tāpiri te ±. Tāpiri -8101 ki te \sqrt{16201}.
x=\frac{8101-\sqrt{16201}}{5832}
Whakawehe -8101+\sqrt{16201} ki te -5832.
x=\frac{-\sqrt{16201}-8101}{-5832}
Nā, me whakaoti te whārite x=\frac{-8101±\sqrt{16201}}{-5832} ina he tango te ±. Tango \sqrt{16201} mai i -8101.
x=\frac{\sqrt{16201}+8101}{5832}
Whakawehe -8101-\sqrt{16201} ki te -5832.
x=\frac{8101-\sqrt{16201}}{5832} x=\frac{\sqrt{16201}+8101}{5832}
Kua oti te whārite te whakatau.
54\times \frac{8101-\sqrt{16201}}{5832}+\sqrt{\frac{8101-\sqrt{16201}}{5832}}=75
Whakakapia te \frac{8101-\sqrt{16201}}{5832} mō te x i te whārite 54x+\sqrt{x}=75.
75=75
Whakarūnātia. Ko te uara x=\frac{8101-\sqrt{16201}}{5832} kua ngata te whārite.
54\times \frac{\sqrt{16201}+8101}{5832}+\sqrt{\frac{\sqrt{16201}+8101}{5832}}=75
Whakakapia te \frac{\sqrt{16201}+8101}{5832} mō te x i te whārite 54x+\sqrt{x}=75.
\frac{1}{54}\times 16201^{\frac{1}{2}}+\frac{4051}{54}=75
Whakarūnātia. Ko te uara x=\frac{\sqrt{16201}+8101}{5832} kāore e ngata ana ki te whārite.
x=\frac{8101-\sqrt{16201}}{5832}
Ko te whārite \sqrt{x}=75-54x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}