Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2+9-\left(-8y-\left(-8\right)\right)
Ko te tauaro o -9 ko 9.
11-\left(-8y-\left(-8\right)\right)
Tāpirihia te 2 ki te 9, ka 11.
11-\left(-8y+8\right)
Ko te tauaro o -8 ko 8.
11-\left(-8y\right)-8
Hei kimi i te tauaro o -8y+8, kimihia te tauaro o ia taurangi.
11+8y-8
Ko te tauaro o -8y ko 8y.
3+8y
Tangohia te 8 i te 11, ka 3.
\frac{\mathrm{d}}{\mathrm{d}y}(2+9-\left(-8y-\left(-8\right)\right))
Ko te tauaro o -9 ko 9.
\frac{\mathrm{d}}{\mathrm{d}y}(11-\left(-8y-\left(-8\right)\right))
Tāpirihia te 2 ki te 9, ka 11.
\frac{\mathrm{d}}{\mathrm{d}y}(11-\left(-8y+8\right))
Ko te tauaro o -8 ko 8.
\frac{\mathrm{d}}{\mathrm{d}y}(11-\left(-8y\right)-8)
Hei kimi i te tauaro o -8y+8, kimihia te tauaro o ia taurangi.
\frac{\mathrm{d}}{\mathrm{d}y}(11+8y-8)
Ko te tauaro o -8y ko 8y.
\frac{\mathrm{d}}{\mathrm{d}y}(3+8y)
Tangohia te 8 i te 11, ka 3.
8y^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
8y^{0}
Tango 1 mai i 1.
8\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
8
Mō tētahi kupu t, t\times 1=t me 1t=t.