Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

100+499x-5x^{2}=10
Whakamahia te āhuatanga tuaritanga hei whakarea te 1+5x ki te 100-x ka whakakotahi i ngā kupu rite.
100+499x-5x^{2}-10=0
Tangohia te 10 mai i ngā taha e rua.
90+499x-5x^{2}=0
Tangohia te 10 i te 100, ka 90.
-5x^{2}+499x+90=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-499±\sqrt{499^{2}-4\left(-5\right)\times 90}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 499 mō b, me 90 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-499±\sqrt{249001-4\left(-5\right)\times 90}}{2\left(-5\right)}
Pūrua 499.
x=\frac{-499±\sqrt{249001+20\times 90}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
x=\frac{-499±\sqrt{249001+1800}}{2\left(-5\right)}
Whakareatia 20 ki te 90.
x=\frac{-499±\sqrt{250801}}{2\left(-5\right)}
Tāpiri 249001 ki te 1800.
x=\frac{-499±\sqrt{250801}}{-10}
Whakareatia 2 ki te -5.
x=\frac{\sqrt{250801}-499}{-10}
Nā, me whakaoti te whārite x=\frac{-499±\sqrt{250801}}{-10} ina he tāpiri te ±. Tāpiri -499 ki te \sqrt{250801}.
x=\frac{499-\sqrt{250801}}{10}
Whakawehe -499+\sqrt{250801} ki te -10.
x=\frac{-\sqrt{250801}-499}{-10}
Nā, me whakaoti te whārite x=\frac{-499±\sqrt{250801}}{-10} ina he tango te ±. Tango \sqrt{250801} mai i -499.
x=\frac{\sqrt{250801}+499}{10}
Whakawehe -499-\sqrt{250801} ki te -10.
x=\frac{499-\sqrt{250801}}{10} x=\frac{\sqrt{250801}+499}{10}
Kua oti te whārite te whakatau.
100+499x-5x^{2}=10
Whakamahia te āhuatanga tuaritanga hei whakarea te 1+5x ki te 100-x ka whakakotahi i ngā kupu rite.
499x-5x^{2}=10-100
Tangohia te 100 mai i ngā taha e rua.
499x-5x^{2}=-90
Tangohia te 100 i te 10, ka -90.
-5x^{2}+499x=-90
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-5x^{2}+499x}{-5}=-\frac{90}{-5}
Whakawehea ngā taha e rua ki te -5.
x^{2}+\frac{499}{-5}x=-\frac{90}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x^{2}-\frac{499}{5}x=-\frac{90}{-5}
Whakawehe 499 ki te -5.
x^{2}-\frac{499}{5}x=18
Whakawehe -90 ki te -5.
x^{2}-\frac{499}{5}x+\left(-\frac{499}{10}\right)^{2}=18+\left(-\frac{499}{10}\right)^{2}
Whakawehea te -\frac{499}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{499}{10}. Nā, tāpiria te pūrua o te -\frac{499}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{499}{5}x+\frac{249001}{100}=18+\frac{249001}{100}
Pūruatia -\frac{499}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{499}{5}x+\frac{249001}{100}=\frac{250801}{100}
Tāpiri 18 ki te \frac{249001}{100}.
\left(x-\frac{499}{10}\right)^{2}=\frac{250801}{100}
Tauwehea x^{2}-\frac{499}{5}x+\frac{249001}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{499}{10}\right)^{2}}=\sqrt{\frac{250801}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{499}{10}=\frac{\sqrt{250801}}{10} x-\frac{499}{10}=-\frac{\sqrt{250801}}{10}
Whakarūnātia.
x=\frac{\sqrt{250801}+499}{10} x=\frac{499-\sqrt{250801}}{10}
Me tāpiri \frac{499}{10} ki ngā taha e rua o te whārite.