Aromātai
a+2b+4c
Tauwehe
a+2b+4c
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}b-a+\frac{1}{2}b+a+b+c-\left(-a\right)+\frac{3}{2}c-\left(-\frac{3}{2}c\right)
Ko te tauaro o -\frac{1}{2}b ko \frac{1}{2}b.
b-a+a+b+c-\left(-a\right)+\frac{3}{2}c-\left(-\frac{3}{2}c\right)
Pahekotia te \frac{1}{2}b me \frac{1}{2}b, ka b.
b+b+c-\left(-a\right)+\frac{3}{2}c-\left(-\frac{3}{2}c\right)
Pahekotia te -a me a, ka 0.
2b+c-\left(-a\right)+\frac{3}{2}c-\left(-\frac{3}{2}c\right)
Pahekotia te b me b, ka 2b.
2b+c-\left(-a\right)+\frac{3}{2}c+\frac{3}{2}c
Ko te tauaro o -\frac{3}{2}c ko \frac{3}{2}c.
2b+c-\left(-a\right)+3c
Pahekotia te \frac{3}{2}c me \frac{3}{2}c, ka 3c.
2b+c+a+3c
Whakareatia te -1 ki te -1, ka 1.
2b+4c+a
Pahekotia te c me 3c, ka 4c.
\frac{b-2a+b+2a+2b+2c+2a+3c+3c}{2}
Tauwehea te \frac{1}{2}.
2a+4b+8c
Whakaarohia te b-2a+b+2a+2b+2c+2a+3c+3c. Whakarea ka paheko i ngā kīanga tau ōrite.
2\left(a+2b+4c\right)
Whakaarohia te 2a+4b+8c. Tauwehea te 2.
a+2b+4c
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}