Aromātai
-\frac{10}{27}\approx -0.37037037
Tauwehe
-\frac{10}{27} = -0.37037037037037035
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{2}\times \frac{-\frac{3+2}{3}}{3}}{\frac{3}{4}}
Whakareatia te 1 ki te 3, ka 3.
\frac{\frac{1}{2}\times \frac{-\frac{5}{3}}{3}}{\frac{3}{4}}
Tāpirihia te 3 ki te 2, ka 5.
\frac{\frac{1}{2}\times \frac{-5}{3\times 3}}{\frac{3}{4}}
Tuhia te \frac{-\frac{5}{3}}{3} hei hautanga kotahi.
\frac{\frac{1}{2}\times \frac{-5}{9}}{\frac{3}{4}}
Whakareatia te 3 ki te 3, ka 9.
\frac{\frac{1}{2}\left(-\frac{5}{9}\right)}{\frac{3}{4}}
Ka taea te hautanga \frac{-5}{9} te tuhi anō ko -\frac{5}{9} mā te tango i te tohu tōraro.
\frac{\frac{1\left(-5\right)}{2\times 9}}{\frac{3}{4}}
Me whakarea te \frac{1}{2} ki te -\frac{5}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{-5}{18}}{\frac{3}{4}}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-5\right)}{2\times 9}.
\frac{-\frac{5}{18}}{\frac{3}{4}}
Ka taea te hautanga \frac{-5}{18} te tuhi anō ko -\frac{5}{18} mā te tango i te tohu tōraro.
-\frac{5}{18}\times \frac{4}{3}
Whakawehe -\frac{5}{18} ki te \frac{3}{4} mā te whakarea -\frac{5}{18} ki te tau huripoki o \frac{3}{4}.
\frac{-5\times 4}{18\times 3}
Me whakarea te -\frac{5}{18} ki te \frac{4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-20}{54}
Mahia ngā whakarea i roto i te hautanga \frac{-5\times 4}{18\times 3}.
-\frac{10}{27}
Whakahekea te hautanga \frac{-20}{54} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}