Whakaoti mō A
A=-\frac{165}{431}\approx -0.382830626
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2+\frac{1}{1+\frac{1}{\frac{2A}{A}+\frac{1}{A}}}}=\frac{64}{27}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2 ki te \frac{A}{A}.
\frac{1}{2+\frac{1}{1+\frac{1}{\frac{2A+1}{A}}}}=\frac{64}{27}
Tā te mea he rite te tauraro o \frac{2A}{A} me \frac{1}{A}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2+\frac{1}{1+\frac{A}{2A+1}}}=\frac{64}{27}
Tē taea kia ōrite te tāupe A ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakawehe 1 ki te \frac{2A+1}{A} mā te whakarea 1 ki te tau huripoki o \frac{2A+1}{A}.
\frac{1}{2+\frac{1}{\frac{2A+1}{2A+1}+\frac{A}{2A+1}}}=\frac{64}{27}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2A+1}{2A+1}.
\frac{1}{2+\frac{1}{\frac{2A+1+A}{2A+1}}}=\frac{64}{27}
Tā te mea he rite te tauraro o \frac{2A+1}{2A+1} me \frac{A}{2A+1}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2+\frac{1}{\frac{3A+1}{2A+1}}}=\frac{64}{27}
Whakakotahitia ngā kupu rite i 2A+1+A.
\frac{1}{2+\frac{2A+1}{3A+1}}=\frac{64}{27}
Tē taea kia ōrite te tāupe A ki -\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakawehe 1 ki te \frac{3A+1}{2A+1} mā te whakarea 1 ki te tau huripoki o \frac{3A+1}{2A+1}.
\frac{1}{\frac{2\left(3A+1\right)}{3A+1}+\frac{2A+1}{3A+1}}=\frac{64}{27}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2 ki te \frac{3A+1}{3A+1}.
\frac{1}{\frac{2\left(3A+1\right)+2A+1}{3A+1}}=\frac{64}{27}
Tā te mea he rite te tauraro o \frac{2\left(3A+1\right)}{3A+1} me \frac{2A+1}{3A+1}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{6A+2+2A+1}{3A+1}}=\frac{64}{27}
Mahia ngā whakarea i roto o 2\left(3A+1\right)+2A+1.
\frac{1}{\frac{8A+3}{3A+1}}=\frac{64}{27}
Whakakotahitia ngā kupu rite i 6A+2+2A+1.
\frac{3A+1}{8A+3}=\frac{64}{27}
Tē taea kia ōrite te tāupe A ki -\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakawehe 1 ki te \frac{8A+3}{3A+1} mā te whakarea 1 ki te tau huripoki o \frac{8A+3}{3A+1}.
27\left(3A+1\right)=64\left(8A+3\right)
Tē taea kia ōrite te tāupe A ki -\frac{3}{8} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 27\left(8A+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 8A+3,27.
81A+27=64\left(8A+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 27 ki te 3A+1.
81A+27=512A+192
Whakamahia te āhuatanga tohatoha hei whakarea te 64 ki te 8A+3.
81A+27-512A=192
Tangohia te 512A mai i ngā taha e rua.
-431A+27=192
Pahekotia te 81A me -512A, ka -431A.
-431A=192-27
Tangohia te 27 mai i ngā taha e rua.
-431A=165
Tangohia te 27 i te 192, ka 165.
A=\frac{165}{-431}
Whakawehea ngā taha e rua ki te -431.
A=-\frac{165}{431}
Ka taea te hautanga \frac{165}{-431} te tuhi anō ko -\frac{165}{431} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}