Pāriet uz galveno saturu
Atrast x
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

x^{2}-7x-30-x=0
Atņemiet x no abām pusēm.
x^{2}-8x-30=0
Savelciet -7x un -x, lai iegūtu -8x.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-30\right)}}{2}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar 1, b ar -8 un c ar -30.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-30\right)}}{2}
Kāpiniet -8 kvadrātā.
x=\frac{-\left(-8\right)±\sqrt{64+120}}{2}
Reiziniet -4 reiz -30.
x=\frac{-\left(-8\right)±\sqrt{184}}{2}
Pieskaitiet 64 pie 120.
x=\frac{-\left(-8\right)±2\sqrt{46}}{2}
Izvelciet kvadrātsakni no 184.
x=\frac{8±2\sqrt{46}}{2}
Skaitļa -8 pretstats ir 8.
x=\frac{2\sqrt{46}+8}{2}
Tagad atrisiniet vienādojumu x=\frac{8±2\sqrt{46}}{2}, ja ± ir pluss. Pieskaitiet 8 pie 2\sqrt{46}.
x=\sqrt{46}+4
Daliet 8+2\sqrt{46} ar 2.
x=\frac{8-2\sqrt{46}}{2}
Tagad atrisiniet vienādojumu x=\frac{8±2\sqrt{46}}{2}, ja ± ir mīnuss. Atņemiet 2\sqrt{46} no 8.
x=4-\sqrt{46}
Daliet 8-2\sqrt{46} ar 2.
x=\sqrt{46}+4 x=4-\sqrt{46}
Vienādojums tagad ir atrisināts.
x^{2}-7x-30-x=0
Atņemiet x no abām pusēm.
x^{2}-8x-30=0
Savelciet -7x un -x, lai iegūtu -8x.
x^{2}-8x=30
Pievienot 30 abās pusēs. Jebkuram skaitlim pieskaitot nulli, iegūst to pašu skaitli.
x^{2}-8x+\left(-4\right)^{2}=30+\left(-4\right)^{2}
Daliet locekļa x koeficientu -8 ar 2, lai iegūtu -4. Pēc tam abām vienādojuma pusēm pieskaitiet -4 kvadrātā. Ar šo darbību vienādojuma kreisā puse kļūst par pilnu kvadrātu.
x^{2}-8x+16=30+16
Kāpiniet -4 kvadrātā.
x^{2}-8x+16=46
Pieskaitiet 30 pie 16.
\left(x-4\right)^{2}=46
Sadaliet reizinātājos x^{2}-8x+16. Kopumā, kad x^{2}+bx+c ir ideālā kvadrātā, to vienmēr var sadalīt reizinātājos kā \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{46}
Izvelciet abu vienādojuma pušu kvadrātsakni.
x-4=\sqrt{46} x-4=-\sqrt{46}
Vienkāršojiet.
x=\sqrt{46}+4 x=4-\sqrt{46}
Pieskaitiet 4 abās vienādojuma pusēs.