Sadalīt reizinātājos
\left(t-2\right)\left(t-1\right)\left(t+3\right)
Izrēķināt
t^{3}-7t+6
Koplietot
Kopēts starpliktuvē
\left(t+3\right)\left(t^{2}-3t+2\right)
Saskaņā ar racionālo sakņu teorēmu visas polinoma racionālās saknes ir \frac{p}{q}, kur ar p tiek dalīts brīvais loceklis 6 un ar q tiek dalīts vecākais koeficients 1. Viens un sakne ir -3. Sadaliet polinoma, atdalot to ar t+3.
a+b=-3 ab=1\times 2=2
Apsveriet t^{2}-3t+2. Sadaliet izteiksmi reizinātājos, izmantojot grupēšanu. Vispirms izteiksme ir jāpārraksta kā t^{2}+at+bt+2. Lai atrastu a un b, iestatiet sistēmas atrisināt.
a=-2 b=-1
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir negatīvs, a un b ir negatīvas. Sistēmas atrisinājums ir tikai šāds pāris.
\left(t^{2}-2t\right)+\left(-t+2\right)
Pārrakstiet t^{2}-3t+2 kā \left(t^{2}-2t\right)+\left(-t+2\right).
t\left(t-2\right)-\left(t-2\right)
Sadaliet t pirmo un -1 otrajā grupā.
\left(t-2\right)\left(t-1\right)
Iznesiet kopējo reizinātāju t-2 pirms iekavām, izmantojot distributīvo īpašību.
\left(t-2\right)\left(t-1\right)\left(t+3\right)
Pārrakstiet reizinātājos sadalīto vienādojumu.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}