Atrast Y (complex solution)
\left\{\begin{matrix}Y=-\frac{a\Delta }{a^{r}-1}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }a=e^{-\frac{2\pi n_{1}iRe(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}-\frac{2\pi n_{1}Im(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}}\\Y\in \mathrm{C}\text{, }&\Delta =0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }a=e^{-\frac{2\pi n_{1}iRe(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}-\frac{2\pi n_{1}Im(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}}\end{matrix}\right,
Atrast Y
\left\{\begin{matrix}Y=-\frac{a\Delta }{a^{r}-1}\text{, }&\left(a=0\text{ and }r>0\right)\text{ or }\left(r\neq 0\text{ and }a\neq -1\text{ and }Denominator(r)\text{bmod}2=1\text{ and }a<0\right)\text{ or }\left(a<0\text{ and }Numerator(r)\text{bmod}2=1\text{ and }Denominator(r)\text{bmod}2=1\right)\text{ or }\left(r\neq 0\text{ and }a\neq 1\text{ and }a>0\right)\\Y\in \mathrm{R}\text{, }&\left(\Delta =0\text{ and }a=-1\text{ and }Numerator(r)\text{bmod}2=0\text{ and }Denominator(r)\text{bmod}2=1\right)\text{ or }\left(\Delta =0\text{ and }a=1\right)\text{ or }\left(\Delta =0\text{ and }a\neq 0\text{ and }r=0\right)\end{matrix}\right,
Koplietot
Kopēts starpliktuvē
Ya^{r}-Y=-\Delta a
Atņemiet \Delta a no abām pusēm. Atņemot nu nulles jebko, iegūst tā noliegumu.
Ya^{r}-Y=-a\Delta
Pārkārtojiet locekļus.
\left(a^{r}-1\right)Y=-a\Delta
Savelciet visus locekļus, kuros ir Y.
\frac{\left(a^{r}-1\right)Y}{a^{r}-1}=-\frac{a\Delta }{a^{r}-1}
Daliet abas puses ar a^{r}-1.
Y=-\frac{a\Delta }{a^{r}-1}
Dalīšana ar a^{r}-1 atsauc reizināšanu ar a^{r}-1.
Ya^{r}-Y=-\Delta a
Atņemiet \Delta a no abām pusēm. Atņemot nu nulles jebko, iegūst tā noliegumu.
Ya^{r}-Y=-a\Delta
Pārkārtojiet locekļus.
\left(a^{r}-1\right)Y=-a\Delta
Savelciet visus locekļus, kuros ir Y.
\frac{\left(a^{r}-1\right)Y}{a^{r}-1}=-\frac{a\Delta }{a^{r}-1}
Daliet abas puses ar a^{r}-1.
Y=-\frac{a\Delta }{a^{r}-1}
Dalīšana ar a^{r}-1 atsauc reizināšanu ar a^{r}-1.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}