Pāriet uz galveno saturu
Atrast x
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

96=x^{2}+20x+75
Izmantojiet distributīvo īpašību, lai reizinātu x+15 ar x+5 un apvienotu līdzīgos locekļus.
x^{2}+20x+75=96
Mainiet puses tā, lai visi mainīgie locekļi atrastos pa kreisi.
x^{2}+20x+75-96=0
Atņemiet 96 no abām pusēm.
x^{2}+20x-21=0
Atņemiet 96 no 75, lai iegūtu -21.
x=\frac{-20±\sqrt{20^{2}-4\left(-21\right)}}{2}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar 1, b ar 20 un c ar -21.
x=\frac{-20±\sqrt{400-4\left(-21\right)}}{2}
Kāpiniet 20 kvadrātā.
x=\frac{-20±\sqrt{400+84}}{2}
Reiziniet -4 reiz -21.
x=\frac{-20±\sqrt{484}}{2}
Pieskaitiet 400 pie 84.
x=\frac{-20±22}{2}
Izvelciet kvadrātsakni no 484.
x=\frac{2}{2}
Tagad atrisiniet vienādojumu x=\frac{-20±22}{2}, ja ± ir pluss. Pieskaitiet -20 pie 22.
x=1
Daliet 2 ar 2.
x=-\frac{42}{2}
Tagad atrisiniet vienādojumu x=\frac{-20±22}{2}, ja ± ir mīnuss. Atņemiet 22 no -20.
x=-21
Daliet -42 ar 2.
x=1 x=-21
Vienādojums tagad ir atrisināts.
96=x^{2}+20x+75
Izmantojiet distributīvo īpašību, lai reizinātu x+15 ar x+5 un apvienotu līdzīgos locekļus.
x^{2}+20x+75=96
Mainiet puses tā, lai visi mainīgie locekļi atrastos pa kreisi.
x^{2}+20x=96-75
Atņemiet 75 no abām pusēm.
x^{2}+20x=21
Atņemiet 75 no 96, lai iegūtu 21.
x^{2}+20x+10^{2}=21+10^{2}
Daliet locekļa x koeficientu 20 ar 2, lai iegūtu 10. Pēc tam abām vienādojuma pusēm pieskaitiet 10 kvadrātā. Ar šo darbību vienādojuma kreisā puse kļūst par pilnu kvadrātu.
x^{2}+20x+100=21+100
Kāpiniet 10 kvadrātā.
x^{2}+20x+100=121
Pieskaitiet 21 pie 100.
\left(x+10\right)^{2}=121
Sadaliet reizinātājos x^{2}+20x+100. Kopumā, kad x^{2}+bx+c ir ideālā kvadrātā, to vienmēr var sadalīt reizinātājos kā \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{121}
Izvelciet abu vienādojuma pušu kvadrātsakni.
x+10=11 x+10=-11
Vienkāršojiet.
x=1 x=-21
Atņemiet 10 no vienādojuma abām pusēm.