Atrast x (complex solution)
x=\frac{y+\sqrt{3y}+5-\sqrt{3}}{2}
Atrast x
x=\frac{y+\sqrt{3y}+5-\sqrt{3}}{2}
y\geq 0
Atrast y (complex solution)
\left\{\begin{matrix}y=2x+\frac{\sqrt{24x+12\sqrt{3}-51}}{2}+\sqrt{3}-\frac{7}{2}\text{, }&arg(\frac{-\sqrt{8x+4\sqrt{3}-17}-\sqrt{3}}{2})<\pi \\y=2x-\frac{\sqrt{24x+12\sqrt{3}-51}}{2}+\sqrt{3}-\frac{7}{2}\text{, }&arg(\frac{\sqrt{8x+4\sqrt{3}-17}-\sqrt{3}}{2})<\pi \text{ or }x=\frac{5-\sqrt{3}}{2}\end{matrix}\right,
Atrast y
y=2x-\frac{\sqrt{24x+12\sqrt{3}-51}}{2}+\sqrt{3}-\frac{7}{2}
x\geq \frac{5-\sqrt{3}}{2}
Graph
Koplietot
Kopēts starpliktuvē
2x+\sqrt{3}-y=5+\sqrt{3y}
Mainiet puses tā, lai visi mainīgie locekļi atrastos pa kreisi.
2x-y=5+\sqrt{3y}-\sqrt{3}
Atņemiet \sqrt{3} no abām pusēm.
2x=5+\sqrt{3y}-\sqrt{3}+y
Pievienot y abās pusēs.
2x=y+\sqrt{3y}+5-\sqrt{3}
Vienādojums ir standarta formā.
\frac{2x}{2}=\frac{y+\sqrt{3y}+5-\sqrt{3}}{2}
Daliet abas puses ar 2.
x=\frac{y+\sqrt{3y}+5-\sqrt{3}}{2}
Dalīšana ar 2 atsauc reizināšanu ar 2.
2x+\sqrt{3}-y=5+\sqrt{3y}
Mainiet puses tā, lai visi mainīgie locekļi atrastos pa kreisi.
2x-y=5+\sqrt{3y}-\sqrt{3}
Atņemiet \sqrt{3} no abām pusēm.
2x=5+\sqrt{3y}-\sqrt{3}+y
Pievienot y abās pusēs.
2x=y+\sqrt{3y}+5-\sqrt{3}
Vienādojums ir standarta formā.
\frac{2x}{2}=\frac{y+\sqrt{3y}+5-\sqrt{3}}{2}
Daliet abas puses ar 2.
x=\frac{y+\sqrt{3y}+5-\sqrt{3}}{2}
Dalīšana ar 2 atsauc reizināšanu ar 2.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}