Atrast x
x=39-3y
Atrast y
y=-\frac{x}{3}+13
Graph
Koplietot
Kopēts starpliktuvē
2x+4y-62-x=y-23
Atņemiet x no abām pusēm.
x+4y-62=y-23
Savelciet 2x un -x, lai iegūtu x.
x-62=y-23-4y
Atņemiet 4y no abām pusēm.
x-62=-3y-23
Savelciet y un -4y, lai iegūtu -3y.
x=-3y-23+62
Pievienot 62 abās pusēs.
x=-3y+39
Saskaitiet -23 un 62, lai iegūtu 39.
2x+4y-62-y=x-23
Atņemiet y no abām pusēm.
2x+3y-62=x-23
Savelciet 4y un -y, lai iegūtu 3y.
3y-62=x-23-2x
Atņemiet 2x no abām pusēm.
3y-62=-x-23
Savelciet x un -2x, lai iegūtu -x.
3y=-x-23+62
Pievienot 62 abās pusēs.
3y=-x+39
Saskaitiet -23 un 62, lai iegūtu 39.
3y=39-x
Vienādojums ir standarta formā.
\frac{3y}{3}=\frac{39-x}{3}
Daliet abas puses ar 3.
y=\frac{39-x}{3}
Dalīšana ar 3 atsauc reizināšanu ar 3.
y=-\frac{x}{3}+13
Daliet -x+39 ar 3.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}