Atrast x
x=3y+\frac{3}{2}
Atrast y
y=\frac{x}{3}-\frac{1}{2}
Graph
Koplietot
Kopēts starpliktuvē
2y=\frac{2}{3}x-4+3
Izmantojiet distributīvo īpašību, lai reizinātu \frac{2}{3} ar x-6.
2y=\frac{2}{3}x-1
Saskaitiet -4 un 3, lai iegūtu -1.
\frac{2}{3}x-1=2y
Mainiet puses tā, lai visi mainīgie locekļi atrastos pa kreisi.
\frac{2}{3}x=2y+1
Pievienot 1 abās pusēs.
\frac{\frac{2}{3}x}{\frac{2}{3}}=\frac{2y+1}{\frac{2}{3}}
Daliet abas vienādojuma puses ar \frac{2}{3}, kas ir tas pats, kas reizināt abas puses ar apgriezto daļskaitli.
x=\frac{2y+1}{\frac{2}{3}}
Dalīšana ar \frac{2}{3} atsauc reizināšanu ar \frac{2}{3}.
x=3y+\frac{3}{2}
Daliet 2y+1 ar \frac{2}{3}, reizinot 2y+1 ar apgriezto daļskaitli \frac{2}{3} .
2y=\frac{2}{3}x-4+3
Izmantojiet distributīvo īpašību, lai reizinātu \frac{2}{3} ar x-6.
2y=\frac{2}{3}x-1
Saskaitiet -4 un 3, lai iegūtu -1.
2y=\frac{2x}{3}-1
Vienādojums ir standarta formā.
\frac{2y}{2}=\frac{\frac{2x}{3}-1}{2}
Daliet abas puses ar 2.
y=\frac{\frac{2x}{3}-1}{2}
Dalīšana ar 2 atsauc reizināšanu ar 2.
y=\frac{x}{3}-\frac{1}{2}
Daliet \frac{2x}{3}-1 ar 2.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}