Sadalīt reizinātājos
\left(x+3\right)\left(2x+17\right)
Izrēķināt
\left(x+3\right)\left(2x+17\right)
Graph
Koplietot
Kopēts starpliktuvē
a+b=23 ab=2\times 51=102
Sadaliet izteiksmi reizinātājos, izmantojot grupēšanu. Vispirms izteiksme ir jāpārraksta kā 2x^{2}+ax+bx+51. Lai atrastu a un b, iestatiet sistēmas atrisināt.
1,102 2,51 3,34 6,17
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir pozitīvs, a un b ir pozitīvas. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu 102.
1+102=103 2+51=53 3+34=37 6+17=23
Aprēķināt katra pāra summu.
a=6 b=17
Risinājums ir pāris, kas dod summu 23.
\left(2x^{2}+6x\right)+\left(17x+51\right)
Pārrakstiet 2x^{2}+23x+51 kā \left(2x^{2}+6x\right)+\left(17x+51\right).
2x\left(x+3\right)+17\left(x+3\right)
Sadaliet 2x pirmo un 17 otrajā grupā.
\left(x+3\right)\left(2x+17\right)
Iznesiet kopējo reizinātāju x+3 pirms iekavām, izmantojot distributīvo īpašību.
2x^{2}+23x+51=0
Kvadrātisko polinomu var sadalīt reizinātājos, izmantojot transformāciju ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kur x_{1} un x_{2} ir kvadrātsaknes vienādojuma ax^{2}+bx+c=0 risinājumi.
x=\frac{-23±\sqrt{23^{2}-4\times 2\times 51}}{2\times 2}
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-23±\sqrt{529-4\times 2\times 51}}{2\times 2}
Kāpiniet 23 kvadrātā.
x=\frac{-23±\sqrt{529-8\times 51}}{2\times 2}
Reiziniet -4 reiz 2.
x=\frac{-23±\sqrt{529-408}}{2\times 2}
Reiziniet -8 reiz 51.
x=\frac{-23±\sqrt{121}}{2\times 2}
Pieskaitiet 529 pie -408.
x=\frac{-23±11}{2\times 2}
Izvelciet kvadrātsakni no 121.
x=\frac{-23±11}{4}
Reiziniet 2 reiz 2.
x=-\frac{12}{4}
Tagad atrisiniet vienādojumu x=\frac{-23±11}{4}, ja ± ir pluss. Pieskaitiet -23 pie 11.
x=-3
Daliet -12 ar 4.
x=-\frac{34}{4}
Tagad atrisiniet vienādojumu x=\frac{-23±11}{4}, ja ± ir mīnuss. Atņemiet 11 no -23.
x=-\frac{17}{2}
Vienādot daļskaitli \frac{-34}{4} līdz mazākajam loceklim, izvelkot un saīsinot 2.
2x^{2}+23x+51=2\left(x-\left(-3\right)\right)\left(x-\left(-\frac{17}{2}\right)\right)
Sadaliet sākotnējo izteiksmi, izmantojot ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Aizvietojiet -3 ar x_{1} un -\frac{17}{2} ar x_{2}.
2x^{2}+23x+51=2\left(x+3\right)\left(x+\frac{17}{2}\right)
Vienkāršojiet visas formas p-\left(-q\right) izteiksmes uz p+q.
2x^{2}+23x+51=2\left(x+3\right)\times \frac{2x+17}{2}
Pieskaitiet \frac{17}{2} pie x, atrodot kopsaucēju un saskaitot kopā skaitītājus. Pēc tam, ja iespējams, saīsiniet daļskaitli līdz mazākajiem locekļiem.
2x^{2}+23x+51=\left(x+3\right)\left(2x+17\right)
Noīsiniet lielāko kopējo reizinātāju 2 šeit: 2 un 2.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}