Atrast x
x=\frac{8\left(y-1\right)}{3}
Atrast y
y=\frac{3x}{8}+1
Graph
Koplietot
Kopēts starpliktuvē
-3x+7-12=-8y+3
Savelciet 2x un -5x, lai iegūtu -3x.
-3x-5=-8y+3
Atņemiet 12 no 7, lai iegūtu -5.
-3x=-8y+3+5
Pievienot 5 abās pusēs.
-3x=-8y+8
Saskaitiet 3 un 5, lai iegūtu 8.
-3x=8-8y
Vienādojums ir standarta formā.
\frac{-3x}{-3}=\frac{8-8y}{-3}
Daliet abas puses ar -3.
x=\frac{8-8y}{-3}
Dalīšana ar -3 atsauc reizināšanu ar -3.
x=\frac{8y-8}{3}
Daliet -8y+8 ar -3.
-3x+7-12=-8y+3
Savelciet 2x un -5x, lai iegūtu -3x.
-3x-5=-8y+3
Atņemiet 12 no 7, lai iegūtu -5.
-8y+3=-3x-5
Mainiet puses tā, lai visi mainīgie locekļi atrastos pa kreisi.
-8y=-3x-5-3
Atņemiet 3 no abām pusēm.
-8y=-3x-8
Atņemiet 3 no -5, lai iegūtu -8.
\frac{-8y}{-8}=\frac{-3x-8}{-8}
Daliet abas puses ar -8.
y=\frac{-3x-8}{-8}
Dalīšana ar -8 atsauc reizināšanu ar -8.
y=\frac{3x}{8}+1
Daliet -3x-8 ar -8.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}