Sadalīt reizinātājos
2\left(h-\frac{3-3\sqrt{17}}{4}\right)\left(h-\frac{3\sqrt{17}+3}{4}\right)
Izrēķināt
2h^{2}-3h-18
Koplietot
Kopēts starpliktuvē
2h^{2}-3h-18=0
Kvadrātisko polinomu var sadalīt reizinātājos, izmantojot transformāciju ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kur x_{1} un x_{2} ir kvadrātsaknes vienādojuma ax^{2}+bx+c=0 risinājumi.
h=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-18\right)}}{2\times 2}
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
h=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-18\right)}}{2\times 2}
Kāpiniet -3 kvadrātā.
h=\frac{-\left(-3\right)±\sqrt{9-8\left(-18\right)}}{2\times 2}
Reiziniet -4 reiz 2.
h=\frac{-\left(-3\right)±\sqrt{9+144}}{2\times 2}
Reiziniet -8 reiz -18.
h=\frac{-\left(-3\right)±\sqrt{153}}{2\times 2}
Pieskaitiet 9 pie 144.
h=\frac{-\left(-3\right)±3\sqrt{17}}{2\times 2}
Izvelciet kvadrātsakni no 153.
h=\frac{3±3\sqrt{17}}{2\times 2}
Skaitļa -3 pretstats ir 3.
h=\frac{3±3\sqrt{17}}{4}
Reiziniet 2 reiz 2.
h=\frac{3\sqrt{17}+3}{4}
Tagad atrisiniet vienādojumu h=\frac{3±3\sqrt{17}}{4}, ja ± ir pluss. Pieskaitiet 3 pie 3\sqrt{17}.
h=\frac{3-3\sqrt{17}}{4}
Tagad atrisiniet vienādojumu h=\frac{3±3\sqrt{17}}{4}, ja ± ir mīnuss. Atņemiet 3\sqrt{17} no 3.
2h^{2}-3h-18=2\left(h-\frac{3\sqrt{17}+3}{4}\right)\left(h-\frac{3-3\sqrt{17}}{4}\right)
Sadaliet sākotnējo izteiksmi, izmantojot ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Aizvietojiet \frac{3+3\sqrt{17}}{4} ar x_{1} un \frac{3-3\sqrt{17}}{4} ar x_{2}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}