Izrēķināt
114-38\sqrt{15}\approx -33,173367156
Koplietot
Kopēts starpliktuvē
\left(19\sqrt{5}-19\sqrt{3}+19\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}-\sqrt{2}\right)
Izmantojiet distributīvo īpašību, lai reizinātu 19 ar \sqrt{5}-\sqrt{3}+\sqrt{2}.
19\left(\sqrt{5}\right)^{2}-19\sqrt{3}\sqrt{5}-19\sqrt{5}\sqrt{2}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Izmantojiet distributīvo īpašību, katru 19\sqrt{5}-19\sqrt{3}+19\sqrt{2} locekli reizinot ar katru \sqrt{5}-\sqrt{3}-\sqrt{2} locekli.
19\times 5-19\sqrt{3}\sqrt{5}-19\sqrt{5}\sqrt{2}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Skaitļa \sqrt{5} kvadrāts ir 5.
95-19\sqrt{3}\sqrt{5}-19\sqrt{5}\sqrt{2}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Reiziniet 19 un 5, lai iegūtu 95.
95-19\sqrt{15}-19\sqrt{5}\sqrt{2}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Lai reiziniet \sqrt{3} un \sqrt{5}, reiziniet numurus zem kvadrātveida saknes.
95-19\sqrt{15}-19\sqrt{10}-19\sqrt{3}\sqrt{5}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Lai reiziniet \sqrt{5} un \sqrt{2}, reiziniet numurus zem kvadrātveida saknes.
95-19\sqrt{15}-19\sqrt{10}-19\sqrt{15}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Lai reiziniet \sqrt{3} un \sqrt{5}, reiziniet numurus zem kvadrātveida saknes.
95-38\sqrt{15}-19\sqrt{10}+19\left(\sqrt{3}\right)^{2}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Savelciet -19\sqrt{15} un -19\sqrt{15}, lai iegūtu -38\sqrt{15}.
95-38\sqrt{15}-19\sqrt{10}+19\times 3+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Skaitļa \sqrt{3} kvadrāts ir 3.
95-38\sqrt{15}-19\sqrt{10}+57+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Reiziniet 19 un 3, lai iegūtu 57.
152-38\sqrt{15}-19\sqrt{10}+19\sqrt{3}\sqrt{2}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Saskaitiet 95 un 57, lai iegūtu 152.
152-38\sqrt{15}-19\sqrt{10}+19\sqrt{6}+19\sqrt{2}\sqrt{5}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Lai reiziniet \sqrt{3} un \sqrt{2}, reiziniet numurus zem kvadrātveida saknes.
152-38\sqrt{15}-19\sqrt{10}+19\sqrt{6}+19\sqrt{10}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Lai reiziniet \sqrt{2} un \sqrt{5}, reiziniet numurus zem kvadrātveida saknes.
152-38\sqrt{15}+19\sqrt{6}-19\sqrt{3}\sqrt{2}-19\left(\sqrt{2}\right)^{2}
Savelciet -19\sqrt{10} un 19\sqrt{10}, lai iegūtu 0.
152-38\sqrt{15}+19\sqrt{6}-19\sqrt{6}-19\left(\sqrt{2}\right)^{2}
Lai reiziniet \sqrt{3} un \sqrt{2}, reiziniet numurus zem kvadrātveida saknes.
152-38\sqrt{15}-19\left(\sqrt{2}\right)^{2}
Savelciet 19\sqrt{6} un -19\sqrt{6}, lai iegūtu 0.
152-38\sqrt{15}-19\times 2
Skaitļa \sqrt{2} kvadrāts ir 2.
152-38\sqrt{15}-38
Reiziniet -19 un 2, lai iegūtu -38.
114-38\sqrt{15}
Atņemiet 38 no 152, lai iegūtu 114.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}