Pāriet uz galveno saturu
Atrast x
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

x^{3}-x^{2}+\frac{1}{3}x-\frac{1}{27}-\left(\frac{2}{5}x-1\right)\left(2-x\right)-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Lietojiet Ņūtona binomu \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}, lai izvērstu \left(x-\frac{1}{3}\right)^{3}.
x^{3}-x^{2}+\frac{1}{3}x-\frac{1}{27}-\left(\frac{9}{5}x-\frac{2}{5}x^{2}-2\right)-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Izmantojiet distributīvo īpašību, lai reizinātu \frac{2}{5}x-1 ar 2-x un apvienotu līdzīgos locekļus.
x^{3}-x^{2}+\frac{1}{3}x-\frac{1}{27}-\frac{9}{5}x+\frac{2}{5}x^{2}+2-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Lai atrastu \frac{9}{5}x-\frac{2}{5}x^{2}-2 pretējo vērtību, atrodiet katra locekļa pretējo vērtību.
x^{3}-x^{2}-\frac{22}{15}x-\frac{1}{27}+\frac{2}{5}x^{2}+2-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Savelciet \frac{1}{3}x un -\frac{9}{5}x, lai iegūtu -\frac{22}{15}x.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x-\frac{1}{27}+2-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Savelciet -x^{2} un \frac{2}{5}x^{2}, lai iegūtu -\frac{3}{5}x^{2}.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x+\frac{53}{27}-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Saskaitiet -\frac{1}{27} un 2, lai iegūtu \frac{53}{27}.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x+\frac{53}{27}-\left(\frac{2}{5}x^{2}+3x\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Izmantojiet distributīvo īpašību, lai reizinātu x ar \frac{2}{5}x+3.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x+\frac{53}{27}-\frac{2}{5}x^{2}-3x=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Lai atrastu \frac{2}{5}x^{2}+3x pretējo vērtību, atrodiet katra locekļa pretējo vērtību.
x^{3}-x^{2}-\frac{22}{15}x+\frac{53}{27}-3x=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Savelciet -\frac{3}{5}x^{2} un -\frac{2}{5}x^{2}, lai iegūtu -x^{2}.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Savelciet -\frac{22}{15}x un -3x, lai iegūtu -\frac{67}{15}x.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}=x^{3}-x^{2}-\frac{1}{3}\left(2-x\right)
Izmantojiet distributīvo īpašību, lai reizinātu x^{2} ar x-1.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}=x^{3}-x^{2}-\frac{2}{3}+\frac{1}{3}x
Izmantojiet distributīvo īpašību, lai reizinātu -\frac{1}{3} ar 2-x.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}-x^{3}=-x^{2}-\frac{2}{3}+\frac{1}{3}x
Atņemiet x^{3} no abām pusēm.
-x^{2}-\frac{67}{15}x+\frac{53}{27}=-x^{2}-\frac{2}{3}+\frac{1}{3}x
Savelciet x^{3} un -x^{3}, lai iegūtu 0.
-x^{2}-\frac{67}{15}x+\frac{53}{27}+x^{2}=-\frac{2}{3}+\frac{1}{3}x
Pievienot x^{2} abās pusēs.
-\frac{67}{15}x+\frac{53}{27}=-\frac{2}{3}+\frac{1}{3}x
Savelciet -x^{2} un x^{2}, lai iegūtu 0.
-\frac{67}{15}x+\frac{53}{27}-\frac{1}{3}x=-\frac{2}{3}
Atņemiet \frac{1}{3}x no abām pusēm.
-\frac{24}{5}x+\frac{53}{27}=-\frac{2}{3}
Savelciet -\frac{67}{15}x un -\frac{1}{3}x, lai iegūtu -\frac{24}{5}x.
-\frac{24}{5}x=-\frac{2}{3}-\frac{53}{27}
Atņemiet \frac{53}{27} no abām pusēm.
-\frac{24}{5}x=-\frac{71}{27}
Atņemiet \frac{53}{27} no -\frac{2}{3}, lai iegūtu -\frac{71}{27}.
x=-\frac{71}{27}\left(-\frac{5}{24}\right)
Reiziniet abās puses ar -\frac{5}{24}, abpusēju -\frac{24}{5} vērtību.
x=\frac{355}{648}
Reiziniet -\frac{71}{27} un -\frac{5}{24}, lai iegūtu \frac{355}{648}.