Sadalīt reizinātājos
\left(2x-1\right)\left(x+1\right)
Izrēķināt
\left(2x-1\right)\left(x+1\right)
Graph
Koplietot
Kopēts starpliktuvē
a+b=1 ab=2\left(-1\right)=-2
Sadaliet izteiksmi reizinātājos, izmantojot grupēšanu. Vispirms izteiksme ir jāpārraksta kā 2x^{2}+ax+bx-1. Lai atrastu a un b, iestatiet sistēmas atrisināt.
a=-1 b=2
Tā kā ab ir negatīvs, a un b ir pretstats zīmes. Tā kā a+b ir pozitīvs, pozitīvam skaitlim ir lielāks absolūtā vērtība nekā negatīvs. Sistēmas atrisinājums ir tikai šāds pāris.
\left(2x^{2}-x\right)+\left(2x-1\right)
Pārrakstiet 2x^{2}+x-1 kā \left(2x^{2}-x\right)+\left(2x-1\right).
x\left(2x-1\right)+2x-1
Iznesiet reizinātāju x pirms iekavām izteiksmē 2x^{2}-x.
\left(2x-1\right)\left(x+1\right)
Iznesiet kopējo reizinātāju 2x-1 pirms iekavām, izmantojot distributīvo īpašību.
2x^{2}+x-1=0
Kvadrātisko polinomu var sadalīt reizinātājos, izmantojot transformāciju ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kur x_{1} un x_{2} ir kvadrātsaknes vienādojuma ax^{2}+bx+c=0 risinājumi.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-1\right)}}{2\times 2}
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-1±\sqrt{1-4\times 2\left(-1\right)}}{2\times 2}
Kāpiniet 1 kvadrātā.
x=\frac{-1±\sqrt{1-8\left(-1\right)}}{2\times 2}
Reiziniet -4 reiz 2.
x=\frac{-1±\sqrt{1+8}}{2\times 2}
Reiziniet -8 reiz -1.
x=\frac{-1±\sqrt{9}}{2\times 2}
Pieskaitiet 1 pie 8.
x=\frac{-1±3}{2\times 2}
Izvelciet kvadrātsakni no 9.
x=\frac{-1±3}{4}
Reiziniet 2 reiz 2.
x=\frac{2}{4}
Tagad atrisiniet vienādojumu x=\frac{-1±3}{4}, ja ± ir pluss. Pieskaitiet -1 pie 3.
x=\frac{1}{2}
Vienādot daļskaitli \frac{2}{4} līdz mazākajam loceklim, izvelkot un saīsinot 2.
x=-\frac{4}{4}
Tagad atrisiniet vienādojumu x=\frac{-1±3}{4}, ja ± ir mīnuss. Atņemiet 3 no -1.
x=-1
Daliet -4 ar 4.
2x^{2}+x-1=2\left(x-\frac{1}{2}\right)\left(x-\left(-1\right)\right)
Sadaliet sākotnējo izteiksmi, izmantojot ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Aizvietojiet \frac{1}{2} ar x_{1} un -1 ar x_{2}.
2x^{2}+x-1=2\left(x-\frac{1}{2}\right)\left(x+1\right)
Vienkāršojiet visas formas p-\left(-q\right) izteiksmes uz p+q.
2x^{2}+x-1=2\times \frac{2x-1}{2}\left(x+1\right)
Atņemiet \frac{1}{2} no x, atrodot kopsaucēju un atņemot skaitītājus. Pēc tam, ja iespējams, samaziniet daļskaitli līdz mazākajiem locekļiem.
2x^{2}+x-1=\left(2x-1\right)\left(x+1\right)
Noīsiniet lielāko kopējo reizinātāju 2 šeit: 2 un 2.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}