Pāriet uz galveno saturu
Izrēķināt
Tick mark Image
Diferencēt pēc x
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\int x\mathrm{d}x+\int -2\sqrt{x}\mathrm{d}x+\int 1\mathrm{d}x
Integrēt summu terminu pēc termina.
\int x\mathrm{d}x-2\int \sqrt{x}\mathrm{d}x+\int 1\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
\frac{x^{2}}{2}-2\int \sqrt{x}\mathrm{d}x+\int 1\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x\mathrm{d}x ar \frac{x^{2}}{2}.
\frac{x^{2}}{2}-\frac{4x^{\frac{3}{2}}}{3}+\int 1\mathrm{d}x
Pārrakstiet \sqrt{x} kā x^{\frac{1}{2}}. Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{\frac{1}{2}}\mathrm{d}x ar \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Vienkāršojiet. Reiziniet -2 reiz \frac{2x^{\frac{3}{2}}}{3}.
\frac{x^{2}}{2}-\frac{4x^{\frac{3}{2}}}{3}+x
Atrast 1, kas izmanto kopējo integrāļi kārtulu tabulu \int a\mathrm{d}x=ax.
\frac{x^{2}}{2}-\frac{4x^{\frac{3}{2}}}{3}+x+С
Ja F\left(x\right) ir f\left(x\right) nenoteiktais integrālis, tad f\left(x\right) visu to antiderivatives ir norādīts F\left(x\right)+C. Tāpēc, pievienojiet šim rezultātam C\in \mathrm{R} integrāciju.