Pāriet uz galveno saturu
Izrēķināt
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\int _{0}^{1}x^{2}\left(1-3x+3x^{2}-x^{3}\right)\mathrm{d}x
Lietojiet Ņūtona binomu \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}, lai izvērstu \left(1-x\right)^{3}.
\int _{0}^{1}x^{2}-3x^{3}+3x^{4}-x^{5}\mathrm{d}x
Izmantojiet distributīvo īpašību, lai reizinātu x^{2} ar 1-3x+3x^{2}-x^{3}.
\int x^{2}-3x^{3}+3x^{4}-x^{5}\mathrm{d}x
Vispirms noteikt nenoteikto integrāli.
\int x^{2}\mathrm{d}x+\int -3x^{3}\mathrm{d}x+\int 3x^{4}\mathrm{d}x+\int -x^{5}\mathrm{d}x
Integrēt summu terminu pēc termina.
\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x+3\int x^{4}\mathrm{d}x-\int x^{5}\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
\frac{x^{3}}{3}-3\int x^{3}\mathrm{d}x+3\int x^{4}\mathrm{d}x-\int x^{5}\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{2}\mathrm{d}x ar \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\frac{3x^{4}}{4}+3\int x^{4}\mathrm{d}x-\int x^{5}\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{3}\mathrm{d}x ar \frac{x^{4}}{4}. Reiziniet -3 reiz \frac{x^{4}}{4}.
\frac{x^{3}}{3}-\frac{3x^{4}}{4}+\frac{3x^{5}}{5}-\int x^{5}\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{4}\mathrm{d}x ar \frac{x^{5}}{5}. Reiziniet 3 reiz \frac{x^{5}}{5}.
\frac{x^{3}}{3}-\frac{3x^{4}}{4}+\frac{3x^{5}}{5}-\frac{x^{6}}{6}
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{5}\mathrm{d}x ar \frac{x^{6}}{6}. Reiziniet -1 reiz \frac{x^{6}}{6}.
-\frac{x^{6}}{6}+\frac{3x^{5}}{5}-\frac{3x^{4}}{4}+\frac{x^{3}}{3}
Vienkāršojiet.
-\frac{1^{6}}{6}+\frac{3}{5}\times 1^{5}-\frac{3}{4}\times 1^{4}+\frac{1^{3}}{3}-\left(-\frac{0^{6}}{6}+\frac{3}{5}\times 0^{5}-\frac{3}{4}\times 0^{4}+\frac{0^{3}}{3}\right)
Noteiktais integrālis ir vienādojuma nenoteiktais integrālis, kas ir noteikts pie integrācijas augstākā limita, atņemot nenoteikto integrāli pie zemākā integrācijas limita.
\frac{1}{60}
Vienkāršojiet.