Izrēķināt
8x^{14}+16x^{8}+16x^{7}+8x^{2}+16x+С
Diferencēt pēc x
16\left(7x^{6}+1\right)\left(x^{7}+x+1\right)
Viktorīna
Integration
5 problēmas, kas līdzīgas:
\int ( 4 x ^ { 7 } + 4 x + 4 ) ( 28 x ^ { 6 } + 4 ) d x
Koplietot
Kopēts starpliktuvē
\int 112x^{13}+128x^{7}+16x+112x^{6}+16\mathrm{d}x
Izmantojiet distributīvo īpašību, lai reizinātu 4x^{7}+4x+4 ar 28x^{6}+4 un apvienotu līdzīgos locekļus.
\int 112x^{13}\mathrm{d}x+\int 128x^{7}\mathrm{d}x+\int 16x\mathrm{d}x+\int 112x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Integrēt summu terminu pēc termina.
112\int x^{13}\mathrm{d}x+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Iznest konstanti pirms iekavām katrā no terminiem.
8x^{14}+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{13}\mathrm{d}x ar \frac{x^{14}}{14}. Reiziniet 112 reiz \frac{x^{14}}{14}.
8x^{14}+16x^{8}+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{7}\mathrm{d}x ar \frac{x^{8}}{8}. Reiziniet 128 reiz \frac{x^{8}}{8}.
8x^{14}+16x^{8}+8x^{2}+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x\mathrm{d}x ar \frac{x^{2}}{2}. Reiziniet 16 reiz \frac{x^{2}}{2}.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+\int 16\mathrm{d}x
Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{6}\mathrm{d}x ar \frac{x^{7}}{7}. Reiziniet 112 reiz \frac{x^{7}}{7}.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+16x
Atrast 16, kas izmanto kopējo integrāļi kārtulu tabulu \int a\mathrm{d}x=ax.
8x^{14}+16x^{8}+16x^{7}+8x^{2}+16x+С
Ja F\left(x\right) ir f\left(x\right) nenoteiktais integrālis, tad f\left(x\right) visu to antiderivatives ir norādīts F\left(x\right)+C. Tāpēc, pievienojiet šim rezultātam C\in \mathrm{R} integrāciju.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}