Izrēķināt
\frac{2\sqrt{6}x^{\frac{3}{2}}}{3}+С
Diferencēt pēc x
\sqrt{6x}
Koplietot
Kopēts starpliktuvē
\sqrt{6}\int \sqrt{x}\mathrm{d}x
Iznest konstanti pirms iekavām ar \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\sqrt{6}\times \frac{2x^{\frac{3}{2}}}{3}
Pārrakstiet \sqrt{x} kā x^{\frac{1}{2}}. Tā kā \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 aizstāt \int x^{\frac{1}{2}}\mathrm{d}x ar \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Vienkāršojiet.
\frac{2\sqrt{6}x^{\frac{3}{2}}}{3}
Vienkāršojiet.
\frac{2\sqrt{6}x^{\frac{3}{2}}}{3}+С
Ja F\left(x\right) ir f\left(x\right) nenoteiktais integrālis, tad f\left(x\right) visu to antiderivatives ir norādīts F\left(x\right)+C. Tāpēc, pievienojiet šim rezultātam C\in \mathrm{R} integrāciju.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}