Diferencēt pēc x
48\times \left(\frac{x}{x^{3}+16}\right)^{2}
Izrēķināt
\frac{x^{3}}{x^{3}+16}
Graph
Koplietot
Kopēts starpliktuvē
\frac{\left(x^{3}+16\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3})-x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}+16)}{\left(x^{3}+16\right)^{2}}
Jebkurām divām diferencējamām funkcijām divu funkciju dalījuma atvasinājums ir saucējs reiz skaitītāja atvasinājums mīnus skaitītājs reiz saucēja atvasinājums, kas visi izdalīti ar saucēju kvadrātā.
\frac{\left(x^{3}+16\right)\times 3x^{3-1}-x^{3}\times 3x^{3-1}}{\left(x^{3}+16\right)^{2}}
Polinoma atvasinājums ir tā locekļu atvasinājumu summa. Konstanta locekļa atvasinājums ir 0. ax^{n} atvasinājums ir nax^{n-1}.
\frac{\left(x^{3}+16\right)\times 3x^{2}-x^{3}\times 3x^{2}}{\left(x^{3}+16\right)^{2}}
Veiciet aritmētiskās darbības.
\frac{x^{3}\times 3x^{2}+16\times 3x^{2}-x^{3}\times 3x^{2}}{\left(x^{3}+16\right)^{2}}
Izvērsiet, izmantojot distributīvo īpašību.
\frac{3x^{3+2}+16\times 3x^{2}-3x^{3+2}}{\left(x^{3}+16\right)^{2}}
Lai sareizinātu vienas bāzes pakāpes, saskaitiet to kāpinātājus.
\frac{3x^{5}+48x^{2}-3x^{5}}{\left(x^{3}+16\right)^{2}}
Veiciet aritmētiskās darbības.
\frac{\left(3-3\right)x^{5}+48x^{2}}{\left(x^{3}+16\right)^{2}}
Savelciet līdzīgus locekļus.
\frac{48x^{2}}{\left(x^{3}+16\right)^{2}}
Atņemiet 3 no 3.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}