Pāriet uz galveno saturu
Izrēķināt
Tick mark Image
Diferencēt pēc x
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)x^{2}}{x\left(x-1\right)})
Sadaliet reizinātājos izteiksmes, kas vēl nav sadalītas reizinātājos formulā \frac{x^{2}\left(2+x\right)}{x^{2}-x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)}{x-1})
Saīsiniet x gan skaitītājā, gan saucējā.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+2x}{x-1})
Izmantojiet distributīvo īpašību, lai reizinātu x ar x+2.
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+2x^{1})-\left(x^{2}+2x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
Jebkurām divām diferencējamām funkcijām divu funkciju dalījuma atvasinājums ir saucējs reiz skaitītāja atvasinājums mīnus skaitītājs reiz saucēja atvasinājums, kas visi izdalīti ar saucēju kvadrātā.
\frac{\left(x^{1}-1\right)\left(2x^{2-1}+2x^{1-1}\right)-\left(x^{2}+2x^{1}\right)x^{1-1}}{\left(x^{1}-1\right)^{2}}
Polinoma atvasinājums ir tā locekļu atvasinājumu summa. Konstanta locekļa atvasinājums ir 0. ax^{n} atvasinājums ir nax^{n-1}.
\frac{\left(x^{1}-1\right)\left(2x^{1}+2x^{0}\right)-\left(x^{2}+2x^{1}\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Vienkāršojiet.
\frac{x^{1}\times 2x^{1}+x^{1}\times 2x^{0}-2x^{1}-2x^{0}-\left(x^{2}+2x^{1}\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Reiziniet x^{1}-1 reiz 2x^{1}+2x^{0}.
\frac{x^{1}\times 2x^{1}+x^{1}\times 2x^{0}-2x^{1}-2x^{0}-\left(x^{2}x^{0}+2x^{1}x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Reiziniet x^{2}+2x^{1} reiz x^{0}.
\frac{2x^{1+1}+2x^{1}-2x^{1}-2x^{0}-\left(x^{2}+2x^{1}\right)}{\left(x^{1}-1\right)^{2}}
Lai sareizinātu vienas bāzes pakāpes, saskaitiet to kāpinātājus.
\frac{2x^{2}+2x^{1}-2x^{1}-2x^{0}-\left(x^{2}+2x^{1}\right)}{\left(x^{1}-1\right)^{2}}
Vienkāršojiet.
\frac{x^{2}-2x^{1}-2x^{0}}{\left(x^{1}-1\right)^{2}}
Savelciet līdzīgus locekļus.
\frac{x^{2}-2x-2x^{0}}{\left(x-1\right)^{2}}
Jebkuram loceklim t t^{1}=t.
\frac{x^{2}-2x-2}{\left(x-1\right)^{2}}
Jebkuram loceklim t, izņemot 0, t^{0}=1.