Izrēķināt
\frac{3xy^{6}}{5}
Paplašināt
\frac{3xy^{6}}{5}
Koplietot
Kopēts starpliktuvē
\frac{\left(\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Paplašiniet \left(\frac{3}{5}xy\right)^{2}.
\frac{\left(\frac{\frac{9}{25}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Aprēķiniet \frac{3}{5} pakāpē 2 un iegūstiet \frac{9}{25}.
\frac{\left(\frac{\frac{9}{25}xy^{2}}{\frac{3}{5}}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Saīsiniet x gan skaitītājā, gan saucējā.
\frac{\left(\frac{\frac{9}{25}xy^{2}\times 5}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Daliet \frac{9}{25}xy^{2} ar \frac{3}{5}, reizinot \frac{9}{25}xy^{2} ar apgriezto daļskaitli \frac{3}{5} .
\frac{\left(\frac{\frac{9}{5}xy^{2}}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Reiziniet \frac{9}{25} un 5, lai iegūtu \frac{9}{5}.
\frac{\left(\frac{3}{5}xy^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Daliet \frac{9}{5}xy^{2} ar 3, lai iegūtu \frac{3}{5}xy^{2}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}\left(y^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Paplašiniet \left(\frac{3}{5}xy^{2}\right)^{3}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 3, lai iegūtu 6.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Aprēķiniet \frac{3}{5} pakāpē 3 un iegūstiet \frac{27}{125}.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}\right)^{2}x^{2}}
Paplašiniet \left(\frac{3}{5}x\right)^{2}.
\frac{\frac{27}{125}x^{3}y^{6}}{\frac{9}{25}x^{2}}
Aprēķiniet \frac{3}{5} pakāpē 2 un iegūstiet \frac{9}{25}.
\frac{\frac{27}{125}xy^{6}}{\frac{9}{25}}
Saīsiniet x^{2} gan skaitītājā, gan saucējā.
\frac{\frac{27}{125}xy^{6}\times 25}{9}
Daliet \frac{27}{125}xy^{6} ar \frac{9}{25}, reizinot \frac{27}{125}xy^{6} ar apgriezto daļskaitli \frac{9}{25} .
\frac{\frac{27}{5}xy^{6}}{9}
Reiziniet \frac{27}{125} un 25, lai iegūtu \frac{27}{5}.
\frac{3}{5}xy^{6}
Daliet \frac{27}{5}xy^{6} ar 9, lai iegūtu \frac{3}{5}xy^{6}.
\frac{\left(\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Paplašiniet \left(\frac{3}{5}xy\right)^{2}.
\frac{\left(\frac{\frac{9}{25}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Aprēķiniet \frac{3}{5} pakāpē 2 un iegūstiet \frac{9}{25}.
\frac{\left(\frac{\frac{9}{25}xy^{2}}{\frac{3}{5}}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Saīsiniet x gan skaitītājā, gan saucējā.
\frac{\left(\frac{\frac{9}{25}xy^{2}\times 5}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Daliet \frac{9}{25}xy^{2} ar \frac{3}{5}, reizinot \frac{9}{25}xy^{2} ar apgriezto daļskaitli \frac{3}{5} .
\frac{\left(\frac{\frac{9}{5}xy^{2}}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Reiziniet \frac{9}{25} un 5, lai iegūtu \frac{9}{5}.
\frac{\left(\frac{3}{5}xy^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Daliet \frac{9}{5}xy^{2} ar 3, lai iegūtu \frac{3}{5}xy^{2}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}\left(y^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Paplašiniet \left(\frac{3}{5}xy^{2}\right)^{3}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 3, lai iegūtu 6.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Aprēķiniet \frac{3}{5} pakāpē 3 un iegūstiet \frac{27}{125}.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}\right)^{2}x^{2}}
Paplašiniet \left(\frac{3}{5}x\right)^{2}.
\frac{\frac{27}{125}x^{3}y^{6}}{\frac{9}{25}x^{2}}
Aprēķiniet \frac{3}{5} pakāpē 2 un iegūstiet \frac{9}{25}.
\frac{\frac{27}{125}xy^{6}}{\frac{9}{25}}
Saīsiniet x^{2} gan skaitītājā, gan saucējā.
\frac{\frac{27}{125}xy^{6}\times 25}{9}
Daliet \frac{27}{125}xy^{6} ar \frac{9}{25}, reizinot \frac{27}{125}xy^{6} ar apgriezto daļskaitli \frac{9}{25} .
\frac{\frac{27}{5}xy^{6}}{9}
Reiziniet \frac{27}{125} un 25, lai iegūtu \frac{27}{5}.
\frac{3}{5}xy^{6}
Daliet \frac{27}{5}xy^{6} ar 9, lai iegūtu \frac{3}{5}xy^{6}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}