Pāriet uz galveno saturu
Izrēķināt
Tick mark Image
Paplašināt
Tick mark Image

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\frac{\left(\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Paplašiniet \left(\frac{3}{5}xy\right)^{2}.
\frac{\left(\frac{\frac{9}{25}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Aprēķiniet \frac{3}{5} pakāpē 2 un iegūstiet \frac{9}{25}.
\frac{\left(\frac{\frac{9}{25}xy^{2}}{\frac{3}{5}}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Saīsiniet x gan skaitītājā, gan saucējā.
\frac{\left(\frac{\frac{9}{25}xy^{2}\times 5}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Daliet \frac{9}{25}xy^{2} ar \frac{3}{5}, reizinot \frac{9}{25}xy^{2} ar apgriezto daļskaitli \frac{3}{5} .
\frac{\left(\frac{\frac{9}{5}xy^{2}}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Reiziniet \frac{9}{25} un 5, lai iegūtu \frac{9}{5}.
\frac{\left(\frac{3}{5}xy^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Daliet \frac{9}{5}xy^{2} ar 3, lai iegūtu \frac{3}{5}xy^{2}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}\left(y^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Paplašiniet \left(\frac{3}{5}xy^{2}\right)^{3}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 3, lai iegūtu 6.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Aprēķiniet \frac{3}{5} pakāpē 3 un iegūstiet \frac{27}{125}.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}\right)^{2}x^{2}}
Paplašiniet \left(\frac{3}{5}x\right)^{2}.
\frac{\frac{27}{125}x^{3}y^{6}}{\frac{9}{25}x^{2}}
Aprēķiniet \frac{3}{5} pakāpē 2 un iegūstiet \frac{9}{25}.
\frac{\frac{27}{125}xy^{6}}{\frac{9}{25}}
Saīsiniet x^{2} gan skaitītājā, gan saucējā.
\frac{\frac{27}{125}xy^{6}\times 25}{9}
Daliet \frac{27}{125}xy^{6} ar \frac{9}{25}, reizinot \frac{27}{125}xy^{6} ar apgriezto daļskaitli \frac{9}{25} .
\frac{\frac{27}{5}xy^{6}}{9}
Reiziniet \frac{27}{125} un 25, lai iegūtu \frac{27}{5}.
\frac{3}{5}xy^{6}
Daliet \frac{27}{5}xy^{6} ar 9, lai iegūtu \frac{3}{5}xy^{6}.
\frac{\left(\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Paplašiniet \left(\frac{3}{5}xy\right)^{2}.
\frac{\left(\frac{\frac{9}{25}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Aprēķiniet \frac{3}{5} pakāpē 2 un iegūstiet \frac{9}{25}.
\frac{\left(\frac{\frac{9}{25}xy^{2}}{\frac{3}{5}}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Saīsiniet x gan skaitītājā, gan saucējā.
\frac{\left(\frac{\frac{9}{25}xy^{2}\times 5}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Daliet \frac{9}{25}xy^{2} ar \frac{3}{5}, reizinot \frac{9}{25}xy^{2} ar apgriezto daļskaitli \frac{3}{5} .
\frac{\left(\frac{\frac{9}{5}xy^{2}}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Reiziniet \frac{9}{25} un 5, lai iegūtu \frac{9}{5}.
\frac{\left(\frac{3}{5}xy^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Daliet \frac{9}{5}xy^{2} ar 3, lai iegūtu \frac{3}{5}xy^{2}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}\left(y^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Paplašiniet \left(\frac{3}{5}xy^{2}\right)^{3}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Lai pakāpi kāpinātu citā pakāpē, sareiziniet kāpinātājus. Sareiziniet 2 un 3, lai iegūtu 6.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Aprēķiniet \frac{3}{5} pakāpē 3 un iegūstiet \frac{27}{125}.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}\right)^{2}x^{2}}
Paplašiniet \left(\frac{3}{5}x\right)^{2}.
\frac{\frac{27}{125}x^{3}y^{6}}{\frac{9}{25}x^{2}}
Aprēķiniet \frac{3}{5} pakāpē 2 un iegūstiet \frac{9}{25}.
\frac{\frac{27}{125}xy^{6}}{\frac{9}{25}}
Saīsiniet x^{2} gan skaitītājā, gan saucējā.
\frac{\frac{27}{125}xy^{6}\times 25}{9}
Daliet \frac{27}{125}xy^{6} ar \frac{9}{25}, reizinot \frac{27}{125}xy^{6} ar apgriezto daļskaitli \frac{9}{25} .
\frac{\frac{27}{5}xy^{6}}{9}
Reiziniet \frac{27}{125} un 25, lai iegūtu \frac{27}{5}.
\frac{3}{5}xy^{6}
Daliet \frac{27}{5}xy^{6} ar 9, lai iegūtu \frac{3}{5}xy^{6}.