ແກ້ສຳລັບ y
y=-6
y=0
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
y\left(y+6\right)=0
ຕົວປະກອບຈາກ y.
y=0 y=-6
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ y=0 ແລະ y+6=0.
y^{2}+6y=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
y=\frac{-6±\sqrt{6^{2}}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 6 ສຳລັບ b ແລະ 0 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-6±6}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 6^{2}.
y=\frac{0}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ y=\frac{-6±6}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -6 ໃສ່ 6.
y=0
ຫານ 0 ດ້ວຍ 2.
y=-\frac{12}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ y=\frac{-6±6}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 6 ອອກຈາກ -6.
y=-6
ຫານ -12 ດ້ວຍ 2.
y=0 y=-6
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
y^{2}+6y=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
y^{2}+6y+3^{2}=3^{2}
ຫານ 6, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ 3. ຈາກນັ້ນເພີ່ມຮາກຂອງ 3 ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
y^{2}+6y+9=9
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 3.
\left(y+3\right)^{2}=9
ຕົວປະກອບ y^{2}+6y+9. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(y+3\right)^{2}}=\sqrt{9}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
y+3=3 y+3=-3
ເຮັດໃຫ້ງ່າຍ.
y=0 y=-6
ລົບ 3 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}