ຕົວປະກອບ
\left(y+2\right)\left(y+3\right)
ປະເມີນ
\left(y+2\right)\left(y+3\right)
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=5 ab=1\times 6=6
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ y^{2}+ay+by+6. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,6 2,3
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 6.
1+6=7 2+3=5
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=2 b=3
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 5.
\left(y^{2}+2y\right)+\left(3y+6\right)
ຂຽນ y^{2}+5y+6 ຄືນໃໝ່ເປັນ \left(y^{2}+2y\right)+\left(3y+6\right).
y\left(y+2\right)+3\left(y+2\right)
ຕົວຫານ y ໃນຕອນທຳອິດ ແລະ 3 ໃນກຸ່ມທີສອງ.
\left(y+2\right)\left(y+3\right)
ແຍກຄຳທົ່ວໄປ y+2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
y^{2}+5y+6=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
y=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
y=\frac{-5±\sqrt{25-4\times 6}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 5.
y=\frac{-5±\sqrt{25-24}}{2}
ຄູນ -4 ໃຫ້ກັບ 6.
y=\frac{-5±\sqrt{1}}{2}
ເພີ່ມ 25 ໃສ່ -24.
y=\frac{-5±1}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 1.
y=-\frac{4}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ y=\frac{-5±1}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -5 ໃສ່ 1.
y=-2
ຫານ -4 ດ້ວຍ 2.
y=-\frac{6}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ y=\frac{-5±1}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 1 ອອກຈາກ -5.
y=-3
ຫານ -6 ດ້ວຍ 2.
y^{2}+5y+6=\left(y-\left(-2\right)\right)\left(y-\left(-3\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ -2 ເປັນ x_{1} ແລະ -3 ເປັນ x_{2}.
y^{2}+5y+6=\left(y+2\right)\left(y+3\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}