Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=15 ab=1\times 50=50
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ y^{2}+ay+by+50. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,50 2,25 5,10
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 50.
1+50=51 2+25=27 5+10=15
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=5 b=10
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 15.
\left(y^{2}+5y\right)+\left(10y+50\right)
ຂຽນ y^{2}+15y+50 ຄືນໃໝ່ເປັນ \left(y^{2}+5y\right)+\left(10y+50\right).
y\left(y+5\right)+10\left(y+5\right)
ຕົວຫານ y ໃນຕອນທຳອິດ ແລະ 10 ໃນກຸ່ມທີສອງ.
\left(y+5\right)\left(y+10\right)
ແຍກຄຳທົ່ວໄປ y+5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
y^{2}+15y+50=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
y=\frac{-15±\sqrt{15^{2}-4\times 50}}{2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
y=\frac{-15±\sqrt{225-4\times 50}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 15.
y=\frac{-15±\sqrt{225-200}}{2}
ຄູນ -4 ໃຫ້ກັບ 50.
y=\frac{-15±\sqrt{25}}{2}
ເພີ່ມ 225 ໃສ່ -200.
y=\frac{-15±5}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 25.
y=-\frac{10}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ y=\frac{-15±5}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -15 ໃສ່ 5.
y=-5
ຫານ -10 ດ້ວຍ 2.
y=-\frac{20}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ y=\frac{-15±5}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 5 ອອກຈາກ -15.
y=-10
ຫານ -20 ດ້ວຍ 2.
y^{2}+15y+50=\left(y-\left(-5\right)\right)\left(y-\left(-10\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ -5 ເປັນ x_{1} ແລະ -10 ເປັນ x_{2}.
y^{2}+15y+50=\left(y+5\right)\left(y+10\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.