Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ y, x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

y-2x=-1
ພິຈາລະນາສົມຜົນທຳອິດ. ລົບ 2x ອອກຈາກທັງສອງຂ້າງ.
y-2x=-1,y+2x=3
ເພື່ອແກ້ຄູ່ສົມຜົນໃດໜຶ່ງໂດຍໃຊ້ການແທນ, ທຳອິດໃຫ້ແກ້ໜຶ່ງໃນສົມຜົນນັ້ນສຳລັບໜຶ່ງໃນຕົວແປຕ່າງໆກ່ອນ. ຈາກນັ້ນແທນທີ່ຜົນສຳລັບຕົວແປນັ້ນໃນສົມຜົນອື່ນ.
y-2x=-1
ເລືອກໜຶ່ງໃນສົມຜົນ ແລະ ແກ້ມັນສຳລັບ y ໂດຍການແຍກ y ທາງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
y=2x-1
ເພີ່ມ 2x ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
2x-1+2x=3
ການແທນ2x-1 ສຳລັບ y ໃນສົມຜົນອື່ນ, y+2x=3.
4x-1=3
ເພີ່ມ 2x ໃສ່ 2x.
4x=4
ເພີ່ມ 1 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x=1
ຫານທັງສອງຂ້າງດ້ວຍ 4.
y=2-1
ການແທນ 1 ສຳລັບ x ໃນ y=2x-1. ເນື່ອງຈາກຜົນຂອງສົມຜົນມີໜຶ່ງຕົວແປເທົ່ານັ້ນ, ທ່ານສາມາດແກ້ສຳລັບ y ໄດ້ໂດຍກົງ.
y=1
ເພີ່ມ -1 ໃສ່ 2.
y=1,x=1
ຕອນນີ້ແກ້ໄຂລະບົບແລ້ວ.
y-2x=-1
ພິຈາລະນາສົມຜົນທຳອິດ. ລົບ 2x ອອກຈາກທັງສອງຂ້າງ.
y-2x=-1,y+2x=3
ວາງສົມຜົນໃນຮູບແບບມາດຕະຖານ ແລ້ວຈາກນັ້ນໃຊ້ເມທຣິກເພື່ອແກ້ລະບົບສົມຜົນ.
\left(\begin{matrix}1&-2\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
ຂຽນສົມຜົນໃນຮູບແບບເມທຣິກ.
inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}1&-2\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
ຄູນຊ້າຍໃສ່ສົມຜົນຕາມເມທຣິກປີ້ນກັບຂອງ \left(\begin{matrix}1&-2\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
ຜະລິດຕະພັນຂອງເມທຣິກ ແລະ ຄ່າປີ້ນຂອງມັນແມ່ນເມທຣິກການຢືນຢັນ.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
ຄູນເມທຣິດຢູ່ດ້ານຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-2\right)}&-\frac{-2}{2-\left(-2\right)}\\-\frac{1}{2-\left(-2\right)}&\frac{1}{2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
ສຳລັບແມ​ຕ​ຣິກ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ແມ​ຕ​ຣິກກົງກັນຂ້າມແມ່ນ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ດັ່ງນັ້ນສົມຜົນເມທຣິກສາມາດຖືກຂຽນຄືນໃໝ່ເປັນບັນຫາສູດຄູນເມທຣິກໄດ້.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
ເຮັດເລກຄະນິດ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-1\right)+\frac{1}{2}\times 3\\-\frac{1}{4}\left(-1\right)+\frac{1}{4}\times 3\end{matrix}\right)
ຄູນເມທຣິກຕ່າງໆ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
ເຮັດເລກຄະນິດ.
y=1,x=1
ສະກັດອົງປະກອບເມທຣິກ y ແລະ x.
y-2x=-1
ພິຈາລະນາສົມຜົນທຳອິດ. ລົບ 2x ອອກຈາກທັງສອງຂ້າງ.
y-2x=-1,y+2x=3
ເພື່ອແກ້ໂດຍການກຳຈັດ, ຄ່າສຳປະສິດຂອງໜຶ່ງໃນຕົວແປຈະຕ້ອງເທົ່າກັນໃນສົມຜົນທັງສອງ ເພື່ອໃຫ້ຕົວແປຈະຍົກເລີກອອກໄປເມື່ອໜຶ່ງສົມຜົນຖືກລົບອອກຈາກສົມຜົນອື່ນ.
y-y-2x-2x=-1-3
ລົບ y+2x=3 ອອກຈາກ y-2x=-1 ໂດຍການລົບພົດອອກຈາກແຕ່ລະຂ້າງຂອງເຄື່ອງໝາຍເທົ່າກັບ.
-2x-2x=-1-3
ເພີ່ມ y ໃສ່ -y. ຂໍ້ກຳນົດ y ແລະ -y ຍົກເລີກອອກໄປ, ເຮັດໃຫ້ມີສົມຜົນໜຶ່ງທີ່ມີພຽງຕົວແປດຽວທີ່ສາມາດແກ້ໄດ້.
-4x=-1-3
ເພີ່ມ -2x ໃສ່ -2x.
-4x=-4
ເພີ່ມ -1 ໃສ່ -3.
x=1
ຫານທັງສອງຂ້າງດ້ວຍ -4.
y+2=3
ການແທນ 1 ສຳລັບ x ໃນ y+2x=3. ເນື່ອງຈາກຜົນຂອງສົມຜົນມີໜຶ່ງຕົວແປເທົ່ານັ້ນ, ທ່ານສາມາດແກ້ສຳລັບ y ໄດ້ໂດຍກົງ.
y=1
ລົບ 2 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
y=1,x=1
ຕອນນີ້ແກ້ໄຂລະບົບແລ້ວ.