Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ y, x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

y+4x=-7
ພິຈາລະນາສົມຜົນທຳອິດ. ເພີ່ມ 4x ໃສ່ທັງສອງດ້ານ.
y+x=2
ພິຈາລະນາສົມຜົນທີສອງ. ເພີ່ມ x ໃສ່ທັງສອງດ້ານ.
y+4x=-7,y+x=2
ເພື່ອແກ້ຄູ່ສົມຜົນໃດໜຶ່ງໂດຍໃຊ້ການແທນ, ທຳອິດໃຫ້ແກ້ໜຶ່ງໃນສົມຜົນນັ້ນສຳລັບໜຶ່ງໃນຕົວແປຕ່າງໆກ່ອນ. ຈາກນັ້ນແທນທີ່ຜົນສຳລັບຕົວແປນັ້ນໃນສົມຜົນອື່ນ.
y+4x=-7
ເລືອກໜຶ່ງໃນສົມຜົນ ແລະ ແກ້ມັນສຳລັບ y ໂດຍການແຍກ y ທາງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
y=-4x-7
ລົບ 4x ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
-4x-7+x=2
ການແທນ-4x-7 ສຳລັບ y ໃນສົມຜົນອື່ນ, y+x=2.
-3x-7=2
ເພີ່ມ -4x ໃສ່ x.
-3x=9
ເພີ່ມ 7 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x=-3
ຫານທັງສອງຂ້າງດ້ວຍ -3.
y=-4\left(-3\right)-7
ການແທນ -3 ສຳລັບ x ໃນ y=-4x-7. ເນື່ອງຈາກຜົນຂອງສົມຜົນມີໜຶ່ງຕົວແປເທົ່ານັ້ນ, ທ່ານສາມາດແກ້ສຳລັບ y ໄດ້ໂດຍກົງ.
y=12-7
ຄູນ -4 ໃຫ້ກັບ -3.
y=5
ເພີ່ມ -7 ໃສ່ 12.
y=5,x=-3
ຕອນນີ້ແກ້ໄຂລະບົບແລ້ວ.
y+4x=-7
ພິຈາລະນາສົມຜົນທຳອິດ. ເພີ່ມ 4x ໃສ່ທັງສອງດ້ານ.
y+x=2
ພິຈາລະນາສົມຜົນທີສອງ. ເພີ່ມ x ໃສ່ທັງສອງດ້ານ.
y+4x=-7,y+x=2
ວາງສົມຜົນໃນຮູບແບບມາດຕະຖານ ແລ້ວຈາກນັ້ນໃຊ້ເມທຣິກເພື່ອແກ້ລະບົບສົມຜົນ.
\left(\begin{matrix}1&4\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-7\\2\end{matrix}\right)
ຂຽນສົມຜົນໃນຮູບແບບເມທຣິກ.
inverse(\left(\begin{matrix}1&4\\1&1\end{matrix}\right))\left(\begin{matrix}1&4\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&1\end{matrix}\right))\left(\begin{matrix}-7\\2\end{matrix}\right)
ຄູນຊ້າຍໃສ່ສົມຜົນຕາມເມທຣິກປີ້ນກັບຂອງ \left(\begin{matrix}1&4\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&1\end{matrix}\right))\left(\begin{matrix}-7\\2\end{matrix}\right)
ຜະລິດຕະພັນຂອງເມທຣິກ ແລະ ຄ່າປີ້ນຂອງມັນແມ່ນເມທຣິກການຢືນຢັນ.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&1\end{matrix}\right))\left(\begin{matrix}-7\\2\end{matrix}\right)
ຄູນເມທຣິດຢູ່ດ້ານຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-4}&-\frac{4}{1-4}\\-\frac{1}{1-4}&\frac{1}{1-4}\end{matrix}\right)\left(\begin{matrix}-7\\2\end{matrix}\right)
ສຳລັບແມ​ຕ​ຣິກ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ແມ​ຕ​ຣິກກົງກັນຂ້າມແມ່ນ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ດັ່ງນັ້ນສົມຜົນເມທຣິກສາມາດຖືກຂຽນຄືນໃໝ່ເປັນບັນຫາສູດຄູນເມທຣິກໄດ້.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{4}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-7\\2\end{matrix}\right)
ເຮັດເລກຄະນິດ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-7\right)+\frac{4}{3}\times 2\\\frac{1}{3}\left(-7\right)-\frac{1}{3}\times 2\end{matrix}\right)
ຄູນເມທຣິກຕ່າງໆ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\-3\end{matrix}\right)
ເຮັດເລກຄະນິດ.
y=5,x=-3
ສະກັດອົງປະກອບເມທຣິກ y ແລະ x.
y+4x=-7
ພິຈາລະນາສົມຜົນທຳອິດ. ເພີ່ມ 4x ໃສ່ທັງສອງດ້ານ.
y+x=2
ພິຈາລະນາສົມຜົນທີສອງ. ເພີ່ມ x ໃສ່ທັງສອງດ້ານ.
y+4x=-7,y+x=2
ເພື່ອແກ້ໂດຍການກຳຈັດ, ຄ່າສຳປະສິດຂອງໜຶ່ງໃນຕົວແປຈະຕ້ອງເທົ່າກັນໃນສົມຜົນທັງສອງ ເພື່ອໃຫ້ຕົວແປຈະຍົກເລີກອອກໄປເມື່ອໜຶ່ງສົມຜົນຖືກລົບອອກຈາກສົມຜົນອື່ນ.
y-y+4x-x=-7-2
ລົບ y+x=2 ອອກຈາກ y+4x=-7 ໂດຍການລົບພົດອອກຈາກແຕ່ລະຂ້າງຂອງເຄື່ອງໝາຍເທົ່າກັບ.
4x-x=-7-2
ເພີ່ມ y ໃສ່ -y. ຂໍ້ກຳນົດ y ແລະ -y ຍົກເລີກອອກໄປ, ເຮັດໃຫ້ມີສົມຜົນໜຶ່ງທີ່ມີພຽງຕົວແປດຽວທີ່ສາມາດແກ້ໄດ້.
3x=-7-2
ເພີ່ມ 4x ໃສ່ -x.
3x=-9
ເພີ່ມ -7 ໃສ່ -2.
x=-3
ຫານທັງສອງຂ້າງດ້ວຍ 3.
y-3=2
ການແທນ -3 ສຳລັບ x ໃນ y+x=2. ເນື່ອງຈາກຜົນຂອງສົມຜົນມີໜຶ່ງຕົວແປເທົ່ານັ້ນ, ທ່ານສາມາດແກ້ສຳລັບ y ໄດ້ໂດຍກົງ.
y=5
ເພີ່ມ 3 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
y=5,x=-3
ຕອນນີ້ແກ້ໄຂລະບົບແລ້ວ.