ແກ້ສຳລັບ a
\left\{\begin{matrix}a=\frac{x}{\cos(y)}\text{, }&y\leq \pi \text{ and }y\geq 0\text{ and }\left(\exists n_{2}\in \mathrm{Z}\text{ : }\left(y>\pi n_{2}+\frac{\pi }{2}\text{ and }y<\pi n_{2}+\frac{3\pi }{2}\right)\text{ or }y\neq \frac{\pi }{2}\right)\text{ and }x\neq 0\\a\neq 0\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }y=\pi n_{1}+\frac{\pi }{2}\text{, }n_{1}=0\text{ and }x=0\end{matrix}\right,
ແກ້ສຳລັບ x
x=a\cos(y)
y\geq 0\text{ and }y\leq \pi \text{ and }a\neq 0
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}