Skip ໄປຫາເນື້ອຫາຫຼັກ
Math Solver will be retired on July 7, 2025. Solve math equations with Math Assistant in OneNote to help you reach solutions quickly.
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-4 ab=1\left(-12\right)=-12
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ x^{2}+ax+bx-12. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-12 2,-6 3,-4
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -12.
1-12=-11 2-6=-4 3-4=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-6 b=2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
ຂຽນ x^{2}-4x-12 ຄືນໃໝ່ເປັນ \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 2 ໃນກຸ່ມທີສອງ.
\left(x-6\right)\left(x+2\right)
ແຍກຄຳທົ່ວໄປ x-6 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x^{2}-4x-12=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -4.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
ຄູນ -4 ໃຫ້ກັບ -12.
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
ເພີ່ມ 16 ໃສ່ 48.
x=\frac{-\left(-4\right)±8}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 64.
x=\frac{4±8}{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -4 ແມ່ນ 4.
x=\frac{12}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{4±8}{2} ເມື່ອ ± ບວກ. ເພີ່ມ 4 ໃສ່ 8.
x=6
ຫານ 12 ດ້ວຍ 2.
x=-\frac{4}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{4±8}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 8 ອອກຈາກ 4.
x=-2
ຫານ -4 ດ້ວຍ 2.
x^{2}-4x-12=\left(x-6\right)\left(x-\left(-2\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 6 ເປັນ x_{1} ແລະ -2 ເປັນ x_{2}.
x^{2}-4x-12=\left(x-6\right)\left(x+2\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.