Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x (complex solution)
Tick mark Image
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x=-\frac{1018x}{x}-\frac{9000}{x}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ -1018 ໃຫ້ກັບ \frac{x}{x}.
x=\frac{-1018x-9000}{x}
ເນື່ອງຈາກ -\frac{1018x}{x} ແລະ \frac{9000}{x} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
x-\frac{-1018x-9000}{x}=0
ລົບ \frac{-1018x-9000}{x} ອອກຈາກທັງສອງຂ້າງ.
\frac{xx}{x}-\frac{-1018x-9000}{x}=0
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ x ໃຫ້ກັບ \frac{x}{x}.
\frac{xx-\left(-1018x-9000\right)}{x}=0
ເນື່ອງຈາກ \frac{xx}{x} ແລະ \frac{-1018x-9000}{x} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}+1018x+9000}{x}=0
ຄູນໃນເສດສ່ວນ xx-\left(-1018x-9000\right).
x^{2}+1018x+9000=0
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ 0 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ x.
x=\frac{-1018±\sqrt{1018^{2}-4\times 9000}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 1018 ສຳລັບ b ແລະ 9000 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1018±\sqrt{1036324-4\times 9000}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 1018.
x=\frac{-1018±\sqrt{1036324-36000}}{2}
ຄູນ -4 ໃຫ້ກັບ 9000.
x=\frac{-1018±\sqrt{1000324}}{2}
ເພີ່ມ 1036324 ໃສ່ -36000.
x=\frac{-1018±2\sqrt{250081}}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 1000324.
x=\frac{2\sqrt{250081}-1018}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1018±2\sqrt{250081}}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -1018 ໃສ່ 2\sqrt{250081}.
x=\sqrt{250081}-509
ຫານ -1018+2\sqrt{250081} ດ້ວຍ 2.
x=\frac{-2\sqrt{250081}-1018}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1018±2\sqrt{250081}}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 2\sqrt{250081} ອອກຈາກ -1018.
x=-\sqrt{250081}-509
ຫານ -1018-2\sqrt{250081} ດ້ວຍ 2.
x=\sqrt{250081}-509 x=-\sqrt{250081}-509
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x=-\frac{1018x}{x}-\frac{9000}{x}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ -1018 ໃຫ້ກັບ \frac{x}{x}.
x=\frac{-1018x-9000}{x}
ເນື່ອງຈາກ -\frac{1018x}{x} ແລະ \frac{9000}{x} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
x-\frac{-1018x-9000}{x}=0
ລົບ \frac{-1018x-9000}{x} ອອກຈາກທັງສອງຂ້າງ.
\frac{xx}{x}-\frac{-1018x-9000}{x}=0
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ x ໃຫ້ກັບ \frac{x}{x}.
\frac{xx-\left(-1018x-9000\right)}{x}=0
ເນື່ອງຈາກ \frac{xx}{x} ແລະ \frac{-1018x-9000}{x} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}+1018x+9000}{x}=0
ຄູນໃນເສດສ່ວນ xx-\left(-1018x-9000\right).
x^{2}+1018x+9000=0
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ 0 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ x.
x^{2}+1018x=-9000
ລົບ 9000 ອອກຈາກທັງສອງຂ້າງ. ອັນໃດກໍໄດ້ຫານຈາກສູນໄດ້ຈຳນວນລົບຂອງມັນ.
x^{2}+1018x+509^{2}=-9000+509^{2}
ຫານ 1018, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ 509. ຈາກນັ້ນເພີ່ມຮາກຂອງ 509 ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+1018x+259081=-9000+259081
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 509.
x^{2}+1018x+259081=250081
ເພີ່ມ -9000 ໃສ່ 259081.
\left(x+509\right)^{2}=250081
ຕົວປະກອບ x^{2}+1018x+259081. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+509\right)^{2}}=\sqrt{250081}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+509=\sqrt{250081} x+509=-\sqrt{250081}
ເຮັດໃຫ້ງ່າຍ.
x=\sqrt{250081}-509 x=-\sqrt{250081}-509
ລົບ 509 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
x=-\frac{1018x}{x}-\frac{9000}{x}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ -1018 ໃຫ້ກັບ \frac{x}{x}.
x=\frac{-1018x-9000}{x}
ເນື່ອງຈາກ -\frac{1018x}{x} ແລະ \frac{9000}{x} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
x-\frac{-1018x-9000}{x}=0
ລົບ \frac{-1018x-9000}{x} ອອກຈາກທັງສອງຂ້າງ.
\frac{xx}{x}-\frac{-1018x-9000}{x}=0
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ x ໃຫ້ກັບ \frac{x}{x}.
\frac{xx-\left(-1018x-9000\right)}{x}=0
ເນື່ອງຈາກ \frac{xx}{x} ແລະ \frac{-1018x-9000}{x} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}+1018x+9000}{x}=0
ຄູນໃນເສດສ່ວນ xx-\left(-1018x-9000\right).
x^{2}+1018x+9000=0
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ 0 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ x.
x=\frac{-1018±\sqrt{1018^{2}-4\times 9000}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 1018 ສຳລັບ b ແລະ 9000 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1018±\sqrt{1036324-4\times 9000}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 1018.
x=\frac{-1018±\sqrt{1036324-36000}}{2}
ຄູນ -4 ໃຫ້ກັບ 9000.
x=\frac{-1018±\sqrt{1000324}}{2}
ເພີ່ມ 1036324 ໃສ່ -36000.
x=\frac{-1018±2\sqrt{250081}}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 1000324.
x=\frac{2\sqrt{250081}-1018}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1018±2\sqrt{250081}}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -1018 ໃສ່ 2\sqrt{250081}.
x=\sqrt{250081}-509
ຫານ -1018+2\sqrt{250081} ດ້ວຍ 2.
x=\frac{-2\sqrt{250081}-1018}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1018±2\sqrt{250081}}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 2\sqrt{250081} ອອກຈາກ -1018.
x=-\sqrt{250081}-509
ຫານ -1018-2\sqrt{250081} ດ້ວຍ 2.
x=\sqrt{250081}-509 x=-\sqrt{250081}-509
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x=-\frac{1018x}{x}-\frac{9000}{x}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ -1018 ໃຫ້ກັບ \frac{x}{x}.
x=\frac{-1018x-9000}{x}
ເນື່ອງຈາກ -\frac{1018x}{x} ແລະ \frac{9000}{x} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
x-\frac{-1018x-9000}{x}=0
ລົບ \frac{-1018x-9000}{x} ອອກຈາກທັງສອງຂ້າງ.
\frac{xx}{x}-\frac{-1018x-9000}{x}=0
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ x ໃຫ້ກັບ \frac{x}{x}.
\frac{xx-\left(-1018x-9000\right)}{x}=0
ເນື່ອງຈາກ \frac{xx}{x} ແລະ \frac{-1018x-9000}{x} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}+1018x+9000}{x}=0
ຄູນໃນເສດສ່ວນ xx-\left(-1018x-9000\right).
x^{2}+1018x+9000=0
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ 0 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ x.
x^{2}+1018x=-9000
ລົບ 9000 ອອກຈາກທັງສອງຂ້າງ. ອັນໃດກໍໄດ້ຫານຈາກສູນໄດ້ຈຳນວນລົບຂອງມັນ.
x^{2}+1018x+509^{2}=-9000+509^{2}
ຫານ 1018, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ 509. ຈາກນັ້ນເພີ່ມຮາກຂອງ 509 ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+1018x+259081=-9000+259081
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 509.
x^{2}+1018x+259081=250081
ເພີ່ມ -9000 ໃສ່ 259081.
\left(x+509\right)^{2}=250081
ຕົວປະກອບ x^{2}+1018x+259081. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+509\right)^{2}}=\sqrt{250081}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+509=\sqrt{250081} x+509=-\sqrt{250081}
ເຮັດໃຫ້ງ່າຍ.
x=\sqrt{250081}-509 x=-\sqrt{250081}-509
ລົບ 509 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.