Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ບອກຄວາມແຕກຕ່າງ w.r.t. x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{x^{3}}{x^{1}}
ໃຊ້ກົດຂອງເລກກຳລັງເພື່ອເຮັດໃຫ້ສົມຜົນງ່າຍ.
x^{3-1}
ເພື່ອຫານເລກກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ລົບເລກກຳລັງຂອງຕົວຫານອອກຈາກເລກກຳລັງຂອງຕົວເສດອອກ.
x^{2}
ລົບ 1 ອອກຈາກ 3.
x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(x^{3})
ສຳລັບສອງຟັງຊັນໃດກໍຕາມທີ່ຊອກຫາອະນຸພັນໄດ້, ອະນຸພັນຂອງຜະລິດຕະພັນຂອງສອງຟັງຊັນແມ່ນຟັງທຳອິດ ຄູນໃຫ້ກັບອະນຸພັນຂອງຟັງຊັນທີສອງ ບວກໃຫ້ກັບຟັງຊັນທີສອງ ຄູນໃຫ້ອະນຸພັນຂອງຟັງຊັນທຳອິດ.
x^{3}\left(-1\right)x^{-1-1}+\frac{1}{x}\times 3x^{3-1}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
x^{3}\left(-1\right)x^{-2}+\frac{1}{x}\times 3x^{2}
ເຮັດໃຫ້ງ່າຍ.
-x^{3-2}+3x^{-1+2}
ເພື່ອຄູນກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ເພີ່ມເລກກຳລັງຂອງພວກມັນ.
-x^{1}+3x^{1}
ເຮັດໃຫ້ງ່າຍ.
-x+3x
ສຳລັບ t ໃດກໍຕາມ, t^{1}=t.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{1}x^{3-1})
ເພື່ອຫານເລກກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ລົບເລກກຳລັງຂອງຕົວຫານອອກຈາກເລກກຳລັງຂອງຕົວເສດອອກ.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})
ເຮັດເລກຄະນິດ.
2x^{2-1}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
2x^{1}
ເຮັດເລກຄະນິດ.
2x
ສຳລັບ t ໃດກໍຕາມ, t^{1}=t.