Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x^{2}-x+5=14
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x^{2}-x+5-14=14-14
ລົບ 14 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
x^{2}-x+5-14=0
ການລົບ 14 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
x^{2}-x-9=0
ລົບ 14 ອອກຈາກ 5.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-9\right)}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, -1 ສຳລັບ b ແລະ -9 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+36}}{2}
ຄູນ -4 ໃຫ້ກັບ -9.
x=\frac{-\left(-1\right)±\sqrt{37}}{2}
ເພີ່ມ 1 ໃສ່ 36.
x=\frac{1±\sqrt{37}}{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -1 ແມ່ນ 1.
x=\frac{\sqrt{37}+1}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±\sqrt{37}}{2} ເມື່ອ ± ບວກ. ເພີ່ມ 1 ໃສ່ \sqrt{37}.
x=\frac{1-\sqrt{37}}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±\sqrt{37}}{2} ເມື່ອ ± ເປັນລົບ. ລົບ \sqrt{37} ອອກຈາກ 1.
x=\frac{\sqrt{37}+1}{2} x=\frac{1-\sqrt{37}}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x^{2}-x+5=14
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
x^{2}-x+5-5=14-5
ລົບ 5 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
x^{2}-x=14-5
ການລົບ 5 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
x^{2}-x=9
ລົບ 5 ອອກຈາກ 14.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=9+\left(-\frac{1}{2}\right)^{2}
ຫານ -1, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-x+\frac{1}{4}=9+\frac{1}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-x+\frac{1}{4}=\frac{37}{4}
ເພີ່ມ 9 ໃສ່ \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{37}{4}
ຕົວປະກອບ x^{2}-x+\frac{1}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{37}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{2}=\frac{\sqrt{37}}{2} x-\frac{1}{2}=-\frac{\sqrt{37}}{2}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{37}+1}{2} x=\frac{1-\sqrt{37}}{2}
ເພີ່ມ \frac{1}{2} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.